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Abstract— Transportation-On-Demand (TOD) systems,
where users generate requests for transportation from a
pick-up point to a delivery point, are already very popular
and are expected to increase in usage dramatically as the
inconvenience of privately-owned cars in metropolitan areas
becomes excessive. Routing service vehicles through customers
is usually accomplished with heuristic algorithms. In this
paper we study TOD systems in a formal setting that allows
us to characterize fundamental performance limits and
devise dynamic routing policies with provable performance
guarantees. Specifically, we study TOD systems in the form
of a unit-capacity, multiple-vehicle dynamic pick-up and
delivery problem, whereby pick-up requests arrive according
to a Poisson process and are randomly located according
to a general probability density. Corresponding delivery
locations are also randomly distributed according to a general
probability density, and a number of unit-capacity vehicles
must transport demands from their pick-up locations to their
delivery locations. We derive insightful fundamental bounds on
the steady-state waiting times for the demands, and we devise
constant-factor optimal dynamic routing policies. Simulation
results are presented and discussed.

I. INTRODUCTION

Transportation-on-demand systems, where users formulate
request for transportation from a pick-up point to a delivery
point, have become extremely popular. Typical examples are
cab-services and dial-a-ride transportation services for the
elderly and the disabled. Meanwhile, radically new types
of transportation-on-demand systems are being developed,
including Mobility-On-Demand systems [1], which will pro-
vide stacks and racks of light electric vehicles at closely
spaced intervals throughout a city: when a person wants to
go somewhere, he simply walks to the nearest rack, swipes
a card to pick up a vehicle, drives it to the rack nearest to
his destination, and drops it off. MOD systems will enable
convenient point-to-point travel within urban areas and very
high vehicle utilization rates, and will extend availability
to those who cannot or do not want to own their own
vehicles. Large-scale systems employing traditional, non-
electric bicycles have already demonstrated the feasibility
of mobility-on-demand in several cities throughout Europe,
e.g., Paris, Lyon, Milano, Trento, Zurich and so on [2].

The fundamental problem in transportation-on-demand
systems is to route the vehicles with the objective that
customers’ inconvenience (e.g., in terms of waiting time)
is minimized. (In the case of MOD systems, we assume
the cars can autonomously drive from a delivery location to
the next pick-up location -autonomous driving is an active

Marco Pavone, Kyle Treleaven, and Emilio Frazzoli are with the Lab-
oratory for Information and Decision Systems, Department of Aeronau-
tics and Astronautics, Massachusetts Institute of Technology, Cambridge,
{pavone, ktreleav, frazzoli}@mit.edu.

research topic, see for example [3], [4]-.) This problem falls
within the general class of one-to-one Pick-up and Delivery
Problems (PDPs), where each customer (or commodity) must
be transported from a pick-up site to a delivery site by a fleet
of vehicles (with a certain capacity q ≥ 1). One-to-one PDPs
can be either static or dynamic. In the first case, all requests
are known beforehand while in the second case requests are
received dynamically and vehicle routes must be adjusted
in real-time to meet demand. In some transportation-on-
demand systems the setting is static (e.g., for transportation
of disabled people the transportation requests are usually
formulated a day in advance), however in most scenarios the
setting is dynamic. While several exact and heuristic routing
algorithms have been studied for static one-to-one PDPs (see
[5] for an authoritative survey), few rigorous studies exist for
its dynamic counterpart, which often is treated instead by a
sequencing of static subproblems. Dynamic one-to-one PDPs
can be divided into three main categories [6]: (i) Dynamic
Stacker Crane Problem (where the vehicles have unit capac-
ity), (ii) Dynamic Vehicle Routing Problem with Pickups and
Deliveries (where the vehicles can transport more than one
request), and (iii) the Dynamic Dial-a-Ride Problem (where
additional constraints such as time windows are considered).
Excellent surveys on heuristics, metaheuristics and online
algorithms for Dynamic one-to-one PDPs can be found in
[6] and [7]. Even though these algorithms are quite effective
in addressing dynamic one-to-one PDPs, alone they do not
answer critical questions such as: given a certain number of
vehicles, what are the fundamental limits of performance?
Is it possible to characterize optimal routing policies? How
do customer inconvenience levels scale down as the number
of vehicles increases (in other words, what is the marginal
benefit of one more vehicle)? How should one pre-position
vehicles when there are no outstanding demands?

To the best of our knowledge, the only analytical studies
for dynamic one-to-one PDPs are [8] and [9]. Specifically, in
[8] the authors consider the uncapacitated multiple vehicle
case of this problem, and provide lower and upper bounds
on the achievable performance. In the same vein, in [9]
the authors study the unit capacity single vehicle case of
this problem, again providing bounds on the achievable
performance. The results in [8] and [9] are interesting
and insightful, however they are not directly applicable to
transportation-on-demand systems, since such systems are
characterized by multiple and capacitated vehicles.

In this paper we rigorously study routing problems for
dynamic transportation-on-demand systems, where pick-up
requests arrive according to a Poisson process and are
randomly located according to a general probability den-
sity. Corresponding delivery locations are also randomly



distributed according to a general probability density, and
a fleet of unit-capacity vehicles must transport demands
from their pick-up locations to their delivery locations. The
objective is to minimize the expected waiting time for the
demands. We assume that the vehicles have single-integrator
dynamics and that the environment is a bounded, convex
subset within the three-dimensional Euclidean space. These
two assumptions are made mainly to ease the exposition: we
will in fact argue that the results derived in this paper for this
rather artificial but analytically convenient setting hold also
for the more realistic setting where vehicles have differential
constraints and operate within a two-dimensional manifold
(e.g., planar kinematic vehicles with bounded curvature). Our
contributions are three-fold: First, we carefully formulate the
problem. Second, we establish lower bounds on the expected
waiting time in terms of the number of vehicles and other
problem’s characteristics (e.g., arrival rate of the demands).
Finally, we rigorously study a vehicle routing policy whose
performance exhibits the same growth rate (in terms of the
traffic congestion) as the lower bound.

II. BACKGROUND MATERIAL

In this section we summarize the asymptotic properties of
the Euclidean traveling salesperson tour and of the bipartite
matching problem.

A. The Euclidean Traveling Salesperson Problem

Given a set Q of n points in Rd, the Euclidean traveling
salesperson problem (TSP) is to find the minimum-length
tour of Q, i.e., the shortest closed path through all points.
Let LTSP(Q) denote the minimum length of a tour through all
the points in Q. Assume that the locations of the n points are
random variables independently and identically distributed in
a compact set Ω according to a density f ; in [10] it is shown
that there exists a constant βTSP such that, almost surely,

lim
n→+∞

LTSP(Q)
n1−1/d

= βTSP,d

∫
Ω

f̄(q)1−1/d dq, (1)

The bound in equation (1) holds for all compact sets Ω,
and the shape of Ω only affects the convergence rate to the
limit. In [11], the authors note that if Ω is “fairly compact
[square] and fairly convex”, then equation (1) provides an
adequate estimate of the optimal TSP tour length for values
of n as low as 15. The constant βTSP,3 has been estimated
numerically as βTSP,3 ≈ 0.6979± 0.0002, [12]. Henceforth,
we denote βTSP,3 simply as βTSP.

B. The Bipartite Matching Problem

Let Q be a set of points X1, . . . , Xn, Y1, . . . , Yn that are
i.i.d. in a compact set Ω ⊂ Rd, d ≥ 3, and distributed
according to a density f . Let LM(Q) = minσ

∑n
i=1 ‖Xi −

Yσ(i)‖ denote the optimal bipartite matching of the X and Y
points, where σ ranges over all permutations of the integers
1, 2, . . . , n, and where ‖ · ‖ is the Euclidean norm on Rd. In
[13] it is shown that there exists a constant βM such that,
almost surely,

lim
n→+∞

LM(Q)
n1−1/d

= βM,d

∫
Ω

f̄(q)1−1/d dq, (2)

The constant βM,3 has been estimated numerically as βM,3 ≈
0.7080 ± 0.0002, [14]. Henceforth, we denote βM,3 simply
as βM.

III. PROBLEM STATEMENT

In this section we present a simple yet insightful model
for TOD and MOD systems, which takes inspiration from
the work on dynamic vehicle routing in [15].

A. The problem

A total of m vehicles operate in a compact, convex envi-
ronment Ω ⊂ R3. The vehicles are free to move, traveling
at a maximum velocity v, within the environment Ω. The
vehicles are identical, have unlimited range and are of unit
capacity (i.e., they can transport one demand at a time).
Each vehicle is associated with a depot whose location is
xk ∈ Ω, k ∈ {1, . . . ,m}. Demands are generated according
to a homogeneous (i.e., time-invariant) Poisson process, with
time intensity λ ∈ R>0. A newly arrived demand has
an associated pick-up location which is independent and
identically distributed (i.i.d) in Ω according to a density fP.
(Note that while a uniform distribution can be a reasonable
model for TOD systems, it is not for a MOD system, where
pick-ups only happen at specific locations throughout a city.)
Each demand must be transported from its pick-up location
to its delivery location. The delivery locations are also i.i.d.
in Ω according to a density fD. In this paper we will assume
that fP = fD = f . We will also pose the following technical
conditions on f [15]:

1) The density f is K-Lipschitz, i.e., |f(x) − f(y)| ≤
K ‖x− y‖, ∀x, y ∈ Ω.

2) The density f is bounded below and above, i.e., 0 <
f ≤ f(x) ≤ f <∞, ∀x ∈ Ω.

We denote the travel time between the pick-up location
of demand j and its delivery location as sj . A realized
demand is removed from the system after one of the vehicles
has brought it to its delivery location. Because the sites are
generated independently, the expected travel time for demand
j is E [sj ] = s̄ = 1

v

∫
x,y∈Ω

‖y − x‖ f(x)f(y) dy dx. We
define the load factor % .= λs̄/m.

The system time of demand j, denoted by Tj , is defined
as the elapsed time between the arrival of demand j and the
time one of the vehicles completes its service (i.e., it delivers
the demand to its delivery location). The waiting time of
demand j, Wj , is defined by Wj = Tj−sj . The steady-state
system time is defined by T .= lim supj→∞ E [Tj ]. A policy
for routing the vehicles is said to be stable if the expected
number of demands in the system is uniformly bounded at
all times. A necessary condition for the existence of a stable
policy is that % < 1; we shall assume % < 1 throughout the
paper. When we refer to light-load conditions, we consider
the case %→ 0+, in the sense that λ→ 0+; when we refer
to heavy-load conditions, we consider the case % → 1−, in
the sense that λ→ [m/s̄]−.

Let P be the set of all causal, stable, and stationary poli-
cies with the additional (technical) property that decisions
occur only at service completion epochs, except for vehicles
waiting idle at the depot locations. Letting Tπ , denote the



system time of a particular policy π ∈ P , the problem is to
find a policy π∗ (if one exists) such that

Tπ∗ = inf
π∈P

Tπ.

We let T
∗

denote the infimum of the right hand side above.
We call this problem the Dynamic Pick-up Delivery prob-

lem with m vehicles of unit capacity (DPDP/m/1).

B. Discussion
A related problem has been previously studied in [9]. In

that paper, the DPDP/m/1 is analyzed under the following
assumptions: (i) there is only one vehicle (i.e., m = 1), (ii)
the distribution of pick-up and delivery locations is uniform
(i.e., f = 1/|Ω|, where |Ω| is the area of Ω), and Ω ⊂ R2.
First, the authors find a policy that is optimal in light load;
then, they derive a lower bound on the system time of the
order (1−%)−2, and propose a sectoring policy whose bound
on the system time is of the order (1 − %)−3. Finally, they
use simulation to analyze other policies. Note that the lower
bound is of the order (1 − %)−2, while the growth rate of
the sectoring policy is of the order (1− %)−3; therefore, as
% → 1−, the lower bound and the bound for the sectoring
policy are arbitrarily far apart.

In the present paper we consider the unit-capacity dynamic
Pick-up and Delivery problem in the setting of multiple ve-
hicles with single-integrator dynamics, and arbitrary spatial
distribution of demands in three-dimensional environments.
Our key contribution is that we are able to find lower bounds
and policies that have the same growth rate. As mentioned
in the introduction, we assume single-integrator dynamics
and a three-dimensional environment mostly for analytical
convenience: we will argue that the results in this paper hold
also for planar vehicles with differential constraints on their
motion.

As in many queueing problems, the analysis of the
DPDP/m/1 for all values of % ∈ (0, 1) is difficult. Similarly
as in [15], lower bounds for the optimal steady-state system
time will be derived for the light-load case (i.e., % → 0+),
and for the heavy-load case (i.e., % → 1−). Subsequently,
policies will be designed for these two limiting regimes, and
their performance will be compared to the lower bounds.

We conclude this section by mentioning three major lim-
itations of the DPDP/m/1: (i) the vehicles can freely travel
in Ω, i.e., there are no “street constraints”, (ii) the delivery
locations are independent of pick-up locations, and (iii) the
densities fP and fD are equal.

IV. LOWER BOUNDS

In this section we present two lower bounds: the first one
is most useful as %→ 0+ (light load), while the second one
holds as %→ 1− (heavy load).

A. A light load lower bound
A lower bound that is most useful in light load (i.e., when

%→ 0+) is the following.
Theorem 4.1: The optimal expected time spent in the

system by a demand is lower bounded by

T
∗ ≥ 1

v
E [minmi=1 ‖X −X∗i ‖] + s̄. (3)

Proof: The proof is rather straightforward. Assume that
we can place the vehicles in the best a-priori positions, i.e.,
at the locations X∗1 , X

∗
2 , . . . , X

∗
m, such that X∗1 , . . . , X

∗
m =

arg minX1,...,Xm
E [minmi=1 ‖X −Xi‖]. The expectation is

over demand pick-up sites, i.e. X is distributed according to
f . We call such a configuration of points an m-stochastic
median. By definition, the locations X∗1 , . . . , X

∗
m minimize

the expected distance between the pick-up site of a newly
arrived demand and the closest vehicle.

Clearly, the expected time for the vehicle assigned to a
newly arrived demand to reach the corresponding pick-up site
is at least as large as E [minmi=1 ‖X −Xi‖]/v. By adding to
this the expected time to transfer the demand from its pick-up
to its delivery location we obtain the claim.

B. A heavy load lower bound
In this section we present a lower bound that holds as %→

1−; to derive this bound we make heavy usage of the proof
techniques developed in [15]. We start with a definition.

Definition 4.2 (Spatially unbiased policies): Let X be the
pick-up location of a randomly chosen demand and W be
its wait time. A policy π is said to be spatially unbiased if,
for every pair of sets S1,S2 ⊆ Ω, it holds E [W |X ∈ S1] =
E [W |X ∈ S2].

In this section we will find a heavy-load lower bound for
the class of unbiased policies within P .

The expected number of outstanding pick-up sites in an
arbitrary region J of the environment can be expressed as

NP(J ) = λ(J )W (J )

= λ

∫
J
f(x)dxW = NP

∫
J
f(x)dx, (4)

where in the first equality we have applied Little’s theorem
(see [16]) and W (J ) = W because we are considering
unbiased policies.

Because of equation (4), and because f(·) is Lipschitz,
given a ball B (x, z) .= {x′ ∈ Ω | ‖x′ − x‖ ≤ z},

NP(B (x, z)) = NPf(x)V3 z
3 +NP o(z3), (5)

where V3 = 3π/4 is the volume of a unit ball in R3.
In what follows, without loss of generality, we assume that

there is a single depot x0 ∈ Ω. Let Z be the steady-state
expected distance from a vehicle (at the completion epoch
of its demand) to the closest outstanding pick-up location,
or the depot if closer. We now show a technical lemma,
which relates the expected distance E [Z] to the number of
outstanding pick-up locations.

Lemma 4.3: For any unbiased policy in P

lim
NP→∞

N
1/3
P E [Z] ≥ (3/4)4/3

3
√
π

∫
Ω

f2/3(x) dx.

Proof: We first condition on the event that a randomly
tagged demand is delivered at the location XD = x. Let us
fix a neighborhood D(NP) = {x′ | ‖x′ − x0‖ ≤ c−1/3(x)},
where c(x) = NP V3 f(x). There are two possible cases.

Case 1: x /∈ D(NP). For z sufficiently small, i.e., such
that B (x, z) does not contain the depot,

P[Z ≤ z|XD = x] = P[n+
P (B(x, z)) > 0] ≤ N+

P (B(x, z)),



where n+
P is the number of outstanding pick-up sites in the

ball B (x, z) at the delivery time of the current demand and
N+

P is its expectation. The inequality above holds because
n+

P is a non-negative, integer-valued random variable.
For Poisson arrival processes, it holds that N+

P (J ) =
NP(J ) (this is a consequence of the PASTA property, see
[17]), and recalling equation (5) we obtain

N+
P (B(x, z)) = NPf(x)V3 z

3 +NP o(z3).

Hence, we can write

E [Z |XD = x] ≥
∫ c−1/3(x)

0

P[Z > z|XD = x]dz

≥
∫ c−1/3(x)

0

1−NPf(x)V3 z
3−NP o(z3) dz

=
∫ c−1/3(x)

0

1− c(x) z3 −NP o(z3) dz

=
3
4

[NPV3 f(x)]−1/3 − o(N−1/3
P ).

Case 2: x ∈ D(NP). In this case we consider the trivial
lower bound P[Z > z|XD = x] ≥ 0.

We now remove the conditioning on the current delivery
site, and we obtain (recall that by assumption f is bounded
below by f , and thus

∫
D(N)

dz ≤ O(1/N))

E [Z] =
∫

Ω

E [Z |XD = x]f(x)dx

≥ [NPV3]−1/3 3
4

[∫
Ω−D(NP)

f−1/3(x)f(x)dx

]
+

− o(N−1/3
P )

≥ [NPV3]−1/3 3
4

[∫
Ω

f2/3(x)dx− f−1/3f

∫
D(NP)

dz

]
+

− o(N−1/3
P )

= [NPV3]−1/3 3
4

[∫
Ω

f2/3(x)dx
]
− o(N−1/3

P ).

Multiplying by N
1/3
P and taking the limit as NP → ∞,

we obtain the claim.
We are now in a position to prove the main results of this

section.
Theorem 4.4 (Heavy-load lower bound): Within the class

of unbiased policies in P

lim
%→1−

T
∗
(1− %)3 ≥ γ3

3

λ2

m3v3

[∫
Ω

f2/3(x) dx
]3

where γ3 ≥ (3/4)4/3/ 3
√
π.

Proof: Let E [D] denote the steady-state expected dis-
tance traveled empty between the delivery site of a randomly
tagged demand and the pick-up site of the next demand to
be serviced by the same vehicle. A necessary condition for
stability is that

s̄+
E [D]
v
≤ m

λ
. (6)

Since, by definition, E [Z] ≤ E [D], equation (6) implies

λ

m

E [Z]
v
≤ 1− %.

By multiplying both sides by N
1/3
P and raising to the 3-th

power we obtain

NP(1− %)3 ≥
λ3[N1/3

P E [Z]]3

m3v3
.

Applying Little’s Law, i.e. NP = λW , we get

T (1− %)3 ≥W (1− %)3 ≥ λ2[N1/3E [Z]]3

m3v3
.

Taking the limit as %→ 1− we trivially have that NP →
∞, hence we can apply lemma 4.3 and obtain the claim.

C. Lower bounds with other vehicle’s models
It is significant to mention that the order of the lower

bounds derived in this section holds for a number of prob-
lems in R2 where service vehicles have more complex
dynamics. Consider, for example, Dubins vehicles, which
are planar vehicles constrained to move along paths of
bounded curvature, without reversing direction and maintain-
ing a constant speed. A Dubins vehicle at position x (with
minimum turning radius ρ) has a reachable set BDubins(x, z)
with area z3/3ρ for small distances z, regardless of head-
ing (see [18]). In the heavy load case, to obtain a result
similar to theorem 4.4, we simply rewrite equation (5) as
NP (BDubins(x, z)) = NPf(x) z3/3ρ+NP o(z3) and re-apply
the analysis of lemma 4.3.

V. LIGHT LOAD POLICIES

A. The m-stochastic median policy
In this section we describe briefly a policy that achieves

asymptotic optimality in the light load limit. The policy
is the intuitive response to the lower bound construction
of (3). For an instance of the problem, we consider the
placement of m depots within the environment, at locations
X∗1 , . . . , X

∗
m, corresponding to the configuration of the m-

stochastic median. Each depot will correspond to a queue,
and is assigned a service vehicle.

The m-stochastic median queue policy (SMQ)
— Upon arrival, a demand is assigned to the depot
closest to its pick-up location. The depot’s vehicle
services its demands in first-come first-served
order, returning to the depot after each delivery,
and waiting there if its queue is empty.

Each of the m resulting queues forms an M/G/1 queue
with time intensity λi > 0, such that

∑m
i=1 λi = λ.

By applying the Pollaczek-Khinchin formula for the M/G/1
queue [16], we see that the time spent waiting for the vehicle
to service other demands goes to zero as λi → 0+, and then

T SMQ,i →
1
v

E [‖X −X∗i ‖] + s̄i,

where s̄i is the expected pickup-to-delivery distance con-
ditioned on the depot. When we remove the conditioning
with respect to the depot (note the demand at X serviced



by vehicle i implies ‖X −X∗i ‖ = minmi′=1 ‖X −X∗i′‖), and
take λ → 0+, we find that the expected waiting time under
this policy approaches exactly

T SMQ →
1
v

E [minmi=1 ‖X −X∗i ‖] + s̄,

showing the tightness of the lower bound.

VI. HEAVY LOAD POLICIES

Before presenting and analyzing a policy that is particu-
larly effective in heavy load, we define the concept of the
bipartite matching tour.

A. Bipartite matching tour

Let X0, X1, . . . , Xn, Y1, . . . , Yn be points in Rd. The
point X0 will represent the initial location of a vehicle,
the points X = {X1, . . . , Xn} will be pick-up locations
and the points Y = {Y1, . . . , Yn} will be the corresponding
delivery locations. A bipartite matching tour is essentially
an approximation of a shortest length tour through the
points X0,X ,Y with the constraint that when a vehicle
visits a pick-up point, the next point to be visited is the
corresponding delivery point (such a tour is know in the
literature as the stacker crane tour).

The bipartite matching tour is constructed as follows. First
we add n directed edges Xi → Yi that connect pick-up
locations to the corresponding delivery locations. Second,
we find a bipartite matching for the X and Y locations.
By adding the n edges of the bipartite matching to the n
pick-up to delivery edges Xi → Yi we obtain one or more
tours, which we call secondary tours. Finally, we find a TSP
tour (which we call the primary tour) across the locations
X0, X1, . . . , Xn and we add the corresponding edges. A
bipartite matching tour is then as follows: we start at X0,
and follow the primary tour until the first location in X is
reached, say Xj . Then, we follow the secondary tour starting
at Xj until we reach again Xj . We resume the primary tour
and follow it until we find the next unvisited point in X , say
Xk. The procedure is iterated in this way until we reach X0

again (see figure 2). This concept was originally introduced
in [19].

P1

P3

P2

D1

D2

D3

DPT

Fig. 1. A bipartite matching tour. The square represents the current location
of the vehicle. P1, P2, P3 are pick-up locations and D1, D2, D3 are the
corresponding delivery locations. Solid arrows show links between pick-
up and delivery sites. Dotted arrows show links obtained by the bipartite
matching between delivery and pick-up sites. Finally, dashed arrows show
the primary tour (TSP) through pick-up sites. The bipartite matching tour
is: DPT → P1 → D1 → P2 → D2 → P1 → P2 → P3 → D3 →
P3 → DPT .

B. The randomized batch policy
In this section we present an unbiased service policy,

which we call randomized batch policy (RB).
The randomized batch policy (RB) — Each
newly arrived demand is assigned with probability
pk = 1/m to the vehicle k, k ∈ {1, . . . ,m}. Then,
for each vehicle k: Let Dk be the set of outstanding
demands waiting for service. If Dk = ∅, move to
xk (the depot). If, instead, Dk 6= ∅, compute a
bipartite matching tour through the current vehicle
position and all demands in Dk and service all
demands by following such tour. Repeat.

C. Analysis
The performance of the RB policy in heavy load is

characterized by the following theorem.
Theorem 6.1 (Performance of RB policy in heavy load):

As %→ 1−, the system time for the RB policy satisfies

T ≤
λ2 (βTSP + βM)3

(∫
Ω
f2/3(x) dx

)3

v3m2 (1− %)3
(7)

The proof of Theorem 6.1 builds on a number of intermediate
results; we start with the following lemma, similar to Lemma
1 in [20], characterizing the number of outstanding demands
in heavy load.

Lemma 6.2 (Number of demands in heavy load): In
heavy load (i.e., % → 1−), after a transient, the number of
demands serviced in a single tour is very large with high
probability (i.e., the number of demands tends to +∞ with
probability that tends to 1, as % approaches 1−).

Proof: The proof is very similar to the one of lemma
4.3 in [21] and thus it is omitted.

In this policy, each vehicle sees a demand arrival
process which is Poisson with rate λ/m and operates
within the entire workspace Ω. Thus, the m-vehicle prob-
lem has been turned into m independent and (statis-
tically) identical single-vehicle problems, each with a
Poisson arrival process with rate λ/m. As a conse-
quence, we have E [T | demand assigned to vehicle j] =
E [T | demand assigned to vehicle k] and

TRB =
m∑
k=1

1
m

E [T | demand assigned to vehicle k]

= E [T | demand assigned to vehicle 1].

(8)

Therefore it is enough to study the system time for the
demands assigned to vehicle 1. For simplicity of notation
we omit the label 1 in what follows.

Lemma 6.2 has two implications. First, since the number
of demands is very large at the time instants when the vehicle
starts a new bipartite matching tour, we can apply equation
(1) to estimate the length of the TSP tour and equation (2) to
estimate the length of the bipartite matching. Second, since
D 6= ∅ with high probability, the policy operates with the
condition D = ∅ always false.

We refer to the time instant ti, i ≥ 0, in which the vehicle
starts a new bipartite matching tour as the epoch i of the
policy; we refer to the time interval between epoch i and
epoch i + 1 as the ith iteration. Let ni be the number of



outstanding demands serviced during iteration i. Finally, let
Ci be the time interval between the time instant the vehicle
starts to service demands during iteration i and the time
instant the vehicle starts to service demands during next
iteration i+1. Demands arrive according to a Poisson process
with rate λ̂ .= λ/m; then, we have E [ni+1] = λ̂E [Ci]. The
time interval Ci is equal to the time to traverse the bipartite
matching tour through the ni demands, which in turn is the
sum of three components:

1) the time to traverse the edges of the TSP tour;
2) the time to traverse the edges of the bipartite matching;
3) the ni travel times from pick-up locations to delivery

locations.
Assume that i is large enough (say, i ≥ ī) so that, according
to Lemma 6.2, the number of outstanding demands is large.
Then, the expected time to traverse the bipartite matching
tour through the ni demands, which we call T (ni), can be
upper bounded as

E [T (ni)] =
1
v

E [LTSP(ni + 1)]+
1
v

E [LM(ni)]+E
[∑ni

j=1 sj

]
≤ E [ni]

2/3 βTSP + βM

v

∫
Ω

f2/3(x) dx+ E [ni] s̄+O(1),

(9)

where we use equation (1) and we apply Jensen’s inequality
for concave functions in the form E

[
X2/3

]
≤ E [X]2/3.

Then, we obtain the following recurrence relation (where
we define n̄i

.= E [ni]):

n̄i+1 = λ̂E [Ci]

≤ λ̂
(
n̄

2/3
i

βTSP + βM

v

∫
Ω

f2/3(x) dx+ n̄is̄+O(1)
)
.

(10)
The above inequality describes a system of recurrence

relations that allows us to find an upper bound on
lim supi→+∞ n̄i. The following lemma bounds the value to
which the limit lim supi→+∞ n̄i converges.

Lemma 6.3 (Steady state number of demands): In heavy
load, for every initial condition n̄1, the trajectory i 7→ n̄i
satisfies

n̄
.= lim sup

i→+∞
n̄i ≤

λ3(βTSP + βM)3
(∫

Ω
f2/3(x) dx

)3

v3m3 (1− %)3
.

Proof: By Lemma 6.2, ni tends to +∞ with probability
that tends to 1, as % approaches 1−; then, after a transient,
the term O(1) is negligible compared to the other terms
in the right hand side of equation (10), and therefore it
can be ignored (its inclusion in the proof is conceptually
straightforward, but makes the analysis more cumbersome).

Next we define two auxiliary systems, System-Y and
System-Z. We define System-Y (with state y ∈ R) as

y(i+ 1) = λ̂
(
y(i)2/3 βTSP + βM

v

∫
Ω

f2/3(x) dx+ y(i)s̄
)
.

(11)
System-Y is obtained by replacing the inequality in equation
(10) with an equality. Pick, now, any ε > 0. From Young’s
inequality

a =
a (p ε)α

(p ε)α
≤
(
a (p ε)α

)p 1
p

+
( 1

(p ε)α
)q 1
q
,

where a ∈ R≥0, p, q ∈ R>0, 1/p+1/q = 1 and α, ε ∈ R>0.
By letting a = y2/3, p = 3/2, q = 3 and α = 2/3 we obtain:

y2/3 ≤ ε y +
4

27 ε2
.

By applying the above inequality in equation (11) we
obtain

y(i+ 1) ≤λ̂
(
s̄+ ε

βTSP + βM

v

∫
Ω

f2/3(x) dx
)
y(i)

+
4 λ̂

27 ε2

βTSP + βM

v

∫
Ω

f2/3(x) dx︸ ︷︷ ︸
=O(1) λ̂/ε2

. (12)

Next, define System-Z as

z(i+ 1) =λ̂
(
s̄+ ε

βTSP + βM

v

∫
Ω

f2/3(x) dx
)
z(i)

+O(1)
λ̂

ε2
.

(13)

It is immediate to show that if n̄ī ≤ y(̄i) ≤ z(̄i), then

n̄i ≤ y(i) ≤ z(i), for all i ≥ ī. (14)

(Note that System-Y and System-Z are virtual systems for
which we can arbitrarily pick the initial conditions.) The
proof now proceeds as follows. First, we show that the
trajectories of System-Z are bounded; this fact, together
with equation (14), implies that also trajectories of vari-
ables n̄i and y(i) are bounded. Then, we will compute
lim supi→+∞ y(i); this quantity, together with equation (14),
will yield the desired result.

Let us consider the first issue, namely boundedness of tra-
jectories for System-Z (described in equation (13)). System-
Z is a discrete-time linear system and can be rewritten in
compact form as

z(i+ 1) =
(
%+ ε b

)
z(i) +O(1)

λ̂

ε2
,

where % = λ̂s̄ and b = λ̂(βTSP + βM)
∫

Ω
f2/3(x) dx/v.

Since, by assumption, % < 1, there exists a sufficiently
small ε > 0 such that % + ε b < 1. Accordingly, having
selected a sufficiently small ε, each solution i 7→ z(i) ∈
R≥0 of System-Z converges exponentially fast to the unique
equilibrium point

z∗(ε) =
(

1− %− ε b
)−1

O(1)
λ̂

ε2
. (15)

Combining equation (14) with the previous statement, we see
that the solutions i 7→ n̄i and i 7→ y(i) are bounded. Thus

lim sup
i→+∞

n̄i ≤ lim sup
i→+∞

y(i) < +∞. (16)

Finally, we turn our attention to the computation of
y

.= lim supi→+∞ y(i). Taking the lim sup of the left-
and right-hand sides of equation (11), and noting that

lim supi→+∞ y2/3(i) =
(

lim supi→+∞ y(i)
)2/3

, since x→
x2/3 is continuous and strictly monotone increasing on R>0,
we obtain that

y = y2/3 λ̂
βTSP + βM

v

∫
Ω

f2/3(x) dx+ y %; (17)



rearranging we obtain

y =
λ̂3(βTSP + βM)3

(∫
Ω
f2/3(x) dx

)3

v3 (1− %)3
.

Noting that from equation (16) lim supi→+∞ n̄i ≤ y, we
obtain the desired result.

We are now in a position to prove Theorem 6.1.
Proof: [Proof of Theorem 6.1] Define C

.=
lim supi→∞ E [Ci]; then we have, by using the upper bound
on E [Ci] in equation (10) (neglecting O(1) terms),

C
.= lim sup

i→∞
E [Ci] ≤

(
n̄2/3 βTSP + βM

v

∫
Ω

f2/3(x) dx

+ n̄ s̄
)
≤
λ2(βTSP + βM)3

(∫
Ω
f2/3(x) dx

)3

v3m2 (1− %)2
+

λ2 % (βTSP + βM)3
(∫

Ω
f2/3(x) dx

)3

v3m2 (1− %)3
.

Hence, in the limit % → 1−, we have C ≤ λ2 (βTSP +

βM)3
(∫

Ω
f2/3(x) dx

)3/
v3m2 (1− %)3.

The expected steady-state system time of a random de-
mand, T , is then upper bounded, as %→ 1−, by

T ≤ 1
2
C +

1
2
s̄ n̄

≤ 1
2
C +

1
2

λ2 (βTSP + βM)3
(∫

Ω
f2/3(x) dx

)3

v3m2 (1− %)3
,

(18)

where we used the fact that, as % → 1−, the travel time
along the bipartite matching tour is negligible compared to
the pick-up to delivery transfer times. Collecting the results
we obtain the claim.

D. RB policy for Dubins vehicles in R2

The RB policy, with some modifications, can be adapted
to handle the case where vehicles have more complex
dynamics. Consider, for example, Dubins vehicles in R2.
We can adapt the concept of bipartite matching tour as
follows. Assume there are n outstanding demands. First,
we find a Dubins TSP tour (i.e. a TSP tour that respects
the differential constraint of a Dubins vehicle) through the
pick-up sites and the vehicle’s current location. In [22], an
algorithm is proposed to construct such a tour, based on
a tiling of the plane into 2n “beads”, geometric shapes
adapted to the Dubins dynamics (see [22] for a rigorous
description of a bead tiling). The algorithm returns a tour
whose length is of order n2/3. Note that the Dubins TSP
induces a heading constraint for the pick-up sites. Second, we
consider again a bead tiling of the plane into 2n beads, and
we find a minimum length, maximum cardinality bipartite
matching from delivery sites to bead entrance points. The
assignment induces heading constraints for delivery sites, and
by combining theorems 4.1 and 4.8 in [22] the length of this
matching is of order n2/3. We then find a minimum length,
maximum cardinality bipartite matching from bead entrance
points to pick-up sites. By combining again theorems 4.1 and
4.8 in [22], the length of this matching is of order n2/3. At

this stage, each entrance point is associated with one delivery
point and with one pick-up point, hence we have found a
bipartite matching from delivery points to pick-up points
whose length is of order n2/3. Finally, we find minimum
length paths from the pick-up sites to their corresponding
delivery sites with constrained heading. Since the sum of
the lengths of the Dubins TSP and of the (Dubins) bipartite
matching is of the order n2/3, the analysis in the proof of
theorem 6.1 holds, and a theorem analogous to theorem 6.1
can be stated for Dubins vehicles in R2.

E. Comparison with the lower bound

With theorem 6.1 we can readily prove that the steady-
state system time under the RB policy differs from the heavy-
load lower bound in theorem 4.4 by a known constant factor;
specifically, the system time under the RB policy has the
same growth rate of the lower bound (this is not the case in
the work [9]).

Theorem 6.4: Let T
∗

be the optimal system time within
the class of unbiased policies in P; then

TRB

T
∗ ≤ m

(βTSP + βM)3

γ3
3

, as %→ 1−.

VII. SIMULATION

In this section we present simulation results for the RB
policy. We mention that we also studied by simulation several
other unbiased policies (e.g., policies for which the demand
assignment is not random but follows more advance criteria),
however the performance of these policies was similar to that
of the RB policy, and so they will not be discussed.

In all simulations we assumed the environment Ω to be
the unit cube [0, 1]3 and the spatial demand density f to be
uniform over Ω. For each set of parameters (e.g., %, m etc.)
we generated 20 instances by simulation, and computed the
mean demand system time.

Simulations of the RB policy were performed using
linkern1 as a solver to generate approximations to the
optimal TSP tour. A Python implementation of the Kuhn-
Munkres assignment algorithm [23] was used to generate
Euclidean bipartite matchings.

In figure 2(a) we show the dependance of the system time
TRB on the load factor % with a number of vehicles m = 3.
We consider values of % ∈ [0.6, 0.75], which correspond to a
moderate/heavy load. One can observe that the experimental
results are within the theoretical lower and upper bounds
(even though these bounds formally hold only in the limit
%→ 1−); moreover, one can observe that the performance of
the RB policy is significantly better than what is predicted by
the upper bound; hence we believe that the upper bound in
theorem 6.1 is rather conservative. We also study how TRB
scales with m. To this end, we set the load factor % = 0.6
and we simulate the RB policy with m = 1, 2, 3, 4, 5. Note
that by fixing ρ, we are implicitly letting λ be a function
of m, since, by definition, λ = %m/s̄. Hence, by increasing
m while keeping % fixed the upper bound in theorem 6.1
stays constant, while the lower bound in theorem 4.4 scales

1The TSP solver linkern is freely available for academic research use
at http://www.tsp.gatech.edu/concorde.html.



as 1/m. Figure 2(b) reports the value of TRB for each value
of m and show that TRB stays constant. Hence, recalling
our previous discussion, we argue that the RB policy indeed
scales as 1/m2.
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Fig. 2. Performance of RB policy and comparison with upper and lower
bounds. Left figure: T RB versus %. Right figure: scaling of T RB with respect
to m.

VIII. CONCLUSION

In this paper we studied a dynamic PDP with multiple ve-
hicles of unit capacity and we argued that this is a reasonable
model for TOD and MOD systems. We presented a policy
that is optimal in light load and we showed that in heavy
load the system time under the RB policy is, asymptotically,
within a constant factor of the optimal performance. An open
issue in this context is that while the lower bound scales with
the number of vehicles as O(1/m3), the upper bound on the
RB policy scales as O(1/m2). Hence, the optimal scaling
of the system time with respect to the number of vehicles is
between O(1/m3) and O(1/m2), but the exact value is still
unknown.

This paper leaves numerous important extensions open for
further research. First, it is of strong economic interest to
precisely characterize the optimal scaling of the system time
with respect to the number of vehicles. This goal would
require a tighter lower bound (we conjecture, however, that
the scaling O(1/m3) is indeed correct) and/or devising a
policy with a better scaling in terms of m. Second, our initial
motivation was to study TOD and MOD systems, for which
fP and fD might indeed be drastically different (even with
different support). Hence we plan to extend our analysis to
the case fP 6= fD. Finally, we plan to consider impatient
demands that disappear if they are not serviced within a
certain time window.
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