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Abstract— The most widely applied resource allocation strat-
egy is to balance, or equalize, the total workload assigned to
each resource. In mobile multi-agent systems, this principle
directly leads to equitable partitioning policies in which (i) the
workspace is divided into subregions of equal measure, (ii) each
agent is assigned to a unique subregion, and (iii) each agent
is responsible for service requests originating within its own
subregion. In this paper, we provide the first decentralized
algorithm that provably allows m agents to converge to an
equitable partition of the workspace, from any initial configu-
ration, i.e. globally. Moreover, we extend our algorithms to take
into account other relevant issues, like the desire to achieve
an equitable partition in which the shapes of the subregions
are as close as possible to regular polygons. Our approach is
based on a modified gradient algorithm and provides novel
insights into the properties of Power Diagrams. We discuss
possible applications to dynamic vehicle routing and mobile
sensor networks, and we provide extensive simulation results
that show the effectivity of our algorithms.

I. INTRODUCTION

The most widely applied resource allocation strategy is
to balance, or equalize, the total workload assigned to each
resource. While, in principle, several strategies are able to
guarantee workload-balancing in multi-agent systems, equi-
table partitioning policies are predominant [1], [2], [3], [4].
A partitioning policy is an algorithm that, as a function of
the number m of agents and, possibly, of their position and
other information, partitions a bounded workspace A into
subregions Ai, for i ∈ {1, . . . ,m}. Then, each agent i is
assigned to subregion Ai, and each service request in Ai
receives service from the agent assigned to Ai. Accordingly,
if we model the workload for subregion S ⊆ A as λS

.=∫
S
λ(x) dx, where λ(x) is a measure over A, then the

workload for agent i is λAi . Then, load balancing calls
for equalizing the workload λAi in the m subregions or, in
equivalent words, requires to compute an equitable partition
of the workspace A (i.e., a partition in subregions with the
same measure).

Equitable partitioning policies are predominant for three
main reasons: (i) efficiency, (ii) ease of design, (iii) ease
of analysis. Consider, for instance, the well-known dynamic
version of the classic Vehicle Routing Problem: the Dy-
namic Traveling Repairman Problem (DTRP) [1]. In the
DTRP, m agents operating in a workspace A must service
demands whose time of arrival, location and on-site service
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are stochastic; the obiective is to find a policy to service
demands over an infinite horizon that minimizes the expected
system time (wait plus service) of the demands. Equitable
partitioning policies are, indeed, optimal for the DTRP
(see [1], [5], [6]). As a second example, consider high-
performance hybrid wireless networks: a hybrid network is
formed by placing a sparse network of supernodes (“the
agents”) in an ad hoc network (“the customers”). Supernodes
are more sophisticated and act as relays for normal nodes.
As described in [3], an effective configuration for supernodes
in hybrid networks is an equipartition configuration, where
the subregions have the shape of regular hexagons. Equitable
partitioning policies are, therefore, ubiquitous in multi-agent
system applications.

Despite their relevance in robotic network applications, to
the best of our knowledge, the only available decentralized
equitable partitioning policy is the one proposed by the
authors in [7]. However, the policy presented in [7] only
guarantees local (i.e., for a subset of initial conditions)
convergence to equitable partitions.

Building upon our previous work [7], in this paper we
design distributed and adaptive policies that allow a team
of agents to achieve globally, i.e. starting from any initial
condition, a partition into subregions of equal measure.

The second contribution of this paper is to provide ex-
tensions of our algorithms to take into account secondary
objectives, as for example, control on the shapes of the
subregions. Our motivation, here, is that equitable partitions
in which subregions are thin slices are, in most applications,
useless: in the case of dynamic vehicle routing, for example,
a thin slice partition would directly lead to an increase in
fuel consumption.

We, finally, mention that our algorithms, although moti-
vated in the context of multi-agent systems, are a novel con-
tribution to the field of computational geometry; moreover,
our results provide new insights in the geometry of Power
Diagrams partition.

II. BACKGROUND

In this section, we introduce some notation and briefly
review some concepts from calculus and locational optimiza-
tion, on which we will rely extensively later in the paper.

A. Notation

Let ‖ · ‖ denote the Euclidean norm. Let A be a com-
pact, convex subset of Rd. We denote the boundary of
A as ∂A. The distance from a point x to a set M is
defined as dist(x,M) .= infp∈M ‖x − p‖. We define Im

.=
{1, 2, · · · ,m}. Let G = (g1, · · · , gm) ⊂ (A)m denote the
location of m points. A partition (or tessellation) of A is
a collection of m closed subsets A = {A1, · · · , Am} with



disjoint interiors whose union is A. The partition of A is
convex, if each subset Ai, i ∈ Im, is convex. Finally, we
define the saturation function sata,b, with a < b, as:

sata,b =

 1 if x > b
(x− a)/(b− a) if a ≤ x ≤ b
0 otherwise

(1)

B. Voronoi diagrams and Power Diagrams

We refer the reader to [8] and [9] for comprehensive
treatments, respectively, of Voronoi diagrams and Power
Diagrams. Assume that G is an ordered set of distinct points.
The Voronoi Diagram V(G) = (V1(G), · · · , Vm(G)) of A
generated by points G = (g1, · · · , gm) is defined by

Vi(G) = {x ∈ A| ‖x− gi‖ ≤ ‖x− gj‖, ∀j 6= i, j ∈ Im}.
(2)

We refer to G as the set of generators of V(G), and to Vi(G)
as the Voronoi cell of the i-th generator. For gi, gj ∈ G,
i 6= j, let b(gi, gj) = {x| ‖x − gi‖ = ‖x − gj‖} be the
bisector of gi and gj ; face b(gi, gj) bisects the line segment
joining gi and gj , and this line segment is orthogonal to the
face (Perpendicular Bisector Property). It is easy to verify
that each Voronoi cell is a convex set.

Assume, now, that each generator gi ∈ G has assigned
an individual weight wi ∈ R, i ∈ Im. We define W =
(w1, · · · , wm). In some sense, wi measures the capability of
gi to influence its neighborhood. This is expressed by the
power distance dP (x, gi;wi)

.= ‖x− gi‖2 − wi.
We refer to the pair (gi, wi) as a power point. We define

GW =
(

(g1, w1), · · · , (gm, wm)
)
∈ (A× R)m. Two power

points (gi, wi) and (gj , wj) are coincident if gi = gj and
wi = wj . Assume that GW is an ordered set of distinct power
points. Similarly as before, the Power Diagram V(GW ) =
(V1(GW ), · · · , Vm(GW )) generated by power points GW =(

(g1, w1), · · · , (gm, wm)
)

is defined by

Vi(GW ) = {x ∈ A| ‖x− gi‖2 − wi ≤ ‖x− gj‖2 − wj ,
∀j 6= i, j ∈ Im}.

(3)

We refer to GW as the set of power generators of V(GW ),
and to Vi(GW ) as the power cell of the i-th power generator;
moreover we call gi and wi, respectively, the position and
the weight of power generator (gi, wi). Notice that, when
all weights are the same, the Power Diagram coincides with
the Voronoi Diagram. Each power cell is, as well, a convex
set (as it can be easily verified). Notice that (i) a power cell
might be empty, and (ii) gi might not be in its power cell.
Finally, the bisector of (gi, wi) and (gj , wj), i 6= j, is defined
as

b
(

(gi, wi), (gj , wj)
)

= {x ∈ A| (gj − gi)Tx =

1
2

(‖gj‖2 − ‖gi‖2 + wi − wj)}.
(4)

Hence, b
(

(gi, wi), (gj , wj)
)

is a face orthogonal to the line
segment gi gj . Notice that the Power diagram of an ordered

set of possibly coincident power points is not well-defined.
We define

Γcoinc =
{
GW | gi = gj and wi = wj for some i 6= j ∈ Im

}
.

(5)

For simplicity, we will refer to Vi(G) (Vi(GW )) as Vi.
When the two Voronoi (power) cells Vi and Vj are adjacent
(i.e., they share a face), gi ((gi, wi)) is called a Voronoi
(power) neighbor of gj ((gj , wj)), and vice-versa. The set
of indices of the Voronoi (power) neighbors of gi ((gi, wi))
is denoted by Ni. We also define the (i, j)-face as ∆ij

.=
Vi ∩ Vj .

C. A Basic Result in Homotopy Theory
Given two topological manifolds, X,Y and given two

continuous maps f, g : X → Y , we say that f is homotopic
to g if there exists a continuous map H : X × [0, 1] → Y
such that H(x, 0) = f(x) and H(x, 1) = g(x). One can
prove the following.

Theorem 2.1: Let f : C → B a continuous map from a
closed cube C ⊂ Rp to a closed ball B ⊂ Rq . Assume that
the map is surjective on the boundary of B, ∂B, meaning
that ∂B ⊂ f(C). Then f is surjective.

III. PROBLEM FORMULATION

A total of m identical mobile agents provide service in a
compact, convex service region A ⊆ Rd. Let λ be a measure
whose bounded support is A (in equivalent words, λ is not
zero only on A); for any set S, we define the workload
for region S as λS

.=
∫
S
λ(x) dx. The measure λ models

service requests, and can represent, for example, the density
of customers over A, or, in a stochastic setting, their arrival
rate. Given the measure λ, a partition {Ai}i of the workspace
A is equitable if λAi = λAj for all i, j ∈ Im.

A partitioning policy is an algorithm that, as a function of
the number m of agents and, possibly, of their position and
other information, partitions a bounded workspace A into
subregions Ai, i ∈ Im. Then, each agent i is assigned to
subregion Ai, and each service request in Ai receives service
from the agent assigned to Ai. We refer to subregion Ai as
the region of dominance of agent i. Given a measure λ and
a partitioning policy, m agents are in a convex equipartition
configuration with respect to λ if the associated partition is
equitable and convex.

In this paper we are interested in the following problem:
find distributed equitable partitioning policies that allow m
mobile agents to globally (i.e., from any initial condition)
reach a convex equipartition configuration (with respect to
λ). Moreover, we consider the issue of convergence to
equitable partitions with some special properties, e.g., where
subregions have shapes similar to regular polygons.

IV. ON THE EXISTENCE OF EQUITABLE POWER
DIAGRAMS

The key advantage of Power Diagrams is that an equitable
Power Diagram always exists for any λ. Indeed, as shown
in the next theorem, an equitable Power Diagram (with
respect to any λ) exists for any vector of distinct points
G = (g1, . . . , gm) in A.



Theorem 4.1: Let A be a bounded, connected domain in
R2, and λ be a measure on A. Let G = (g1, . . . , gm)
be the positions of m ≥ 1 distinct points in A. Then,
there exist weights wi, i ∈ Im, such that the power points(

(g1, w1), . . . , (gm, wm)
)

generate a Power Diagram that
is equitable with respect to λ. Moreover, given a vector
of weights W ∗ that yields an equitable partition, the set
of all vectors of weights yielding an equitable partition is
W .= {W ∗ + t[1, . . . , 1]}, with t ∈ R.

Proof: It is not restrictive to assume that λA = 1 (i.e.
we normalize the measure of A). First, we construct a weight
space. Let D = diameter(A), and consider the cube C :=
[−D,D]m. This is the weight space and we consider weight
vectors W taking value in C. Second, consider the standard
m-simplex of measures λA1 , . . . , λAm (where A1, . . . , Am
are, as usual, the regions of dominance). This can be realized
in Rm as the subset of defined by

∑m
i=1 λAi = 1 with the

condition λAi ≥ 0. Let’s call this set “the measure simplex
A” (notice that it is (m− 1)-dimensional).

There is a map f : C → A associating, according to the
power distance, a weight vector W with the corresponding
vector of measures (λA1 , . . . , λAm). Since the points in G
are assumed to be distinct, this map is continuous. We will
now use induction on m, starting with the base case m = 3
(the statement for m = 1 and m = 2 is trivial). When
m = 3, the weight space C is a three dimensional cube
with vertices v0 = [−D,−D,−D], v1 = [D,−D,−D],
v2 = [−D,D,−D], v3 = [−D,−D,D], v4 = [D,−D,D],
v5 = [−D,D,D], v6 = [D,D,−D] and v7 = [D,D,D].
The measure simplex A is, instead, a triangle with vertices
u1, u2, u3 that correspond to the cases λA1 = 1, λA2 =
0, λA3 = 0, λA1 = 0, λA2 = 1, λA3 = 0, and λA1 =
0, λA2 = 0, λA3 = 1, respectively. Moreover, call e1, e2 and
e3 the edges opposite the vertices u1, u2, u3 respectively. The
edges ei are, therefore, given by the condition λAi ∈ ei ⇔
λAi = 0.

Let’s return to the map f : C → A (now in the case
of three generators). Observe that the map f sends v0 the
the unique point p0 of A corresponding to the measures of
usual Voronoi cells (since the weights are all equal). Call l1
the edge v0v1; then, it is immediate to see that image of l1
through f is a path γ1 in A joining p0 to u1.

Analogously, the image of l2 = v0v2 through f is a path
γ2 in A joining p0 to u2 and, finally, the image of l3 = v0v3

through f is a path γ3 connecting p0 to u3. It is easy to see
that paths {γi}{i=1,2,3} do not intersect except in p0. Since
the measures of the regions of dominance do not change if
the differences among the weights are kept constant, then it
is easy to see that the fibers of f in the weight space C are
exactly straight lines parallel to the main diagonal v0v7. On
the weight space C let us define the following equivalence
relation: w ≡ w′ if and only if they are on a line parallel
to the main diagonal v0v7. Map f : C → A induces a
continuous map (still called f by abuse of notation) from
C/ ≡ to A having the same image. Let us identify C/ ≡. It
is easy to see that any line in the cube parallel to the main
diagonal v0v7 is entirely determined by its intersection with
the three faces F3 = {w3 = −D}∩C, F2 = {w2 = −D}∩C

and F1 = {w1 = −D}∩ C. Call F the union of these faces.
We therefore have a continuous map f : F → A that has the
same image of our original f . Now f : F → A is injective
by construction and has the same image of f : C → A.
Therefore, since γi = f(li), and edges li have only one
common point in F , namely vertex v0, their images γi can
only have p0 as a common point in A, since by construction
f : F → A is injective. This proves that paths γi do not
intersect except in p0.

Therefore, the median point of A, call it p∗ must lie in one
of the regions in which the triangle A is divided by the paths
γi. If it falls on one of the paths there is nothing to prove.
It is not restrictive to assume that p∗ lies in the interior of
the region whose boundary is described by γ3, γ2 and the
edge e1. Consider the path Γ in A beginning and ending at
p0 given by γ2, then the edge e1 and then the path γ3. It
encloses p∗ by assumption.

We already know that γ2 and γ3 are the images through
f of the edges l2 and l3 respectively. Consider now the
closed loop α on the boundary of C starting at v0 and going
thorough the edges l2 = v0v2, v2v5, v5v3, v3v0 = l3. It
is easy to see that f maps this closed path to the path Γ.
Parametrize the path α using any continuos map α : S1 → C,
so that the image of this map is the path α itself. (Here S1 is
the unit circle.) We, then, have a map Γ := f ◦α : S1 → A,
whose image is the path Γ itself. Since C is contractible there
exists a continuous homotopy H : S1× [0, 1]→ C, such that
H(t, 0) = α(t) and H(t, 1) = V0. Now, composing H with
f , we get a homotopy K := f ◦H : S1 × [0, 1] → A such
that K(t, 0) = Γ(t) and K(t, 1) = P0. This implies that the
path Γ can be continuously shrank to the point p0, so f must
be surjective and p∗ belongs to its image. This proves that
map f : C → A is surjective for m = 3.

v5

v3

v1

v6

v0 = (-D,-D,-D)

v2

V4

l1

l3

l2

α v7 u2 =  λA1
=0,λA2

=1,λA3
=0[ ]

u3

e 2 
= 

   λ
A 2

=0
{

}

u1

[λA1
=1,λA2

=0,λA3
=0]

= e1 =    λA1
=0{ }
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p0 γ3
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1 =0
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Fig. 1. Construction used for the proof of existence of equitable Power
Diagrams.

The case with m points is based on an inductive argument
that will not be developed for the sake of space. The basic
idea is again to use topological forcing to prove existence.
The details and second part of the Theorem are left to the
reader.

Remark 4.2: Since all vectors of weights in W yield
exactly the same Power Diagram, we conclude that the
positions of the generators uniquely induces an equitable
Power Diagram.



V. GRADIENT DESCENT LAW FOR EQUITABLE
PARTITIONING

In this section, we design distributed policies that allow a
team of agents to achieve a convex equipartition configura-
tion.

A. Virtual Generators
The first step is to associate to each agent i a virtual

power generator (virtual generator for short) (gi, wi). We
define the region of dominance for agent i as the Power cell
Vi = Vi(GW ), where GW =

(
(g1, w1), · · · , (gm, wm)

)
(see

Fig. 2). We refer to the partition into regions of dominance
induced by the set of virtual generators GW as V(GW ).
A virtual generator (gi, wi) is simply an artificial variable
locally controlled by the i-th agent; in particular, gi is a
virtual point and wi is its weight.

Virtual generators allow us to decouple the problem of
achieving an equitable partition into regions of dominance
from that of positioning an agent inside its own region of
dominance. We shall assume that each vehicle has sufficient
information available to determine: (1) its Power cell, and
(2) the locations of all outstanding events in its Power
cell. A control policy that relies on information (1) and
(2), is distributed in the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Power cells. A spatially distributed algorithm for
the local computation and maintenance of Power cells can
be designed following the ideas in [10].

Agent

Generator's 
Location

Dominance
Region

Fig. 2. Agents, virtual generators and regions of dominance.

B. Locational Optimization
In light of Theorem 4.1, the key idea is to enable the

weights of the virtual generators to follow a (distributed)
gradient descent law (while maintaining the positions of the
generators fixed) such that an equitable partition is reached.

Assume, henceforth, that the positions of the virtual gen-
erators are distinct, i.e. gi 6= gj for i 6= j. Define the set

S
.=
{

(w1, . . . , wm) ∈ (R)m |λVi > 0 ∀i ∈ Im
}
. (6)

Set S contains all possible vectors of weights such that no
region of dominance has measure zero.

We introduce the locational optimization function HV :
S 7→ R>0:

HV (W ) .=
m∑
i=1

(∫
Vi

λ(x)dx
)−1

=
m∑
i=1

λ−1
Vi
. (7)

C. Smoothness and Gradient of HV

We now analyze the smoothness properties of the loca-
tional optimization function HV . In the following, let δij be
the length of the border ∆ij , and let γij

.= ‖gj − gi‖.
Theorem 5.1: Assume that the positions of the virtual gen-

erators are distinct, i.e. gi 6= gj for i 6= j. Given a measure
λ, the locational optimization function HV is continuously
differentiable on S, where for each i ∈ {1, . . . ,m}

∂HV

∂ wi
=
∑
j∈Ni

1
2γij

( 1
λ2
Vj

− 1
λ2
Vi

)∫
∆ij

λ(x) dx. (8)

Furthermore, the critical configurations of HV are gener-
ators’ weights with the property that all power cells have
measure equal to λA/m.

Proof: The proof is almost identical to that of Theorem
5.1 in [7] and, thus, it is omitted.

Remark 5.2: The gradient in Theorem 5.1 can be com-
puted in a distributed way, since it depends only on the
location of the other agents with contiguous Power cells.

Example 5.3 (Gradient of HV for uniform measure):
The gradient of HV simplifies considerably when λ is
constant. In such case it is straightforward to verify that
(assuming that λ is normalized)

∂HV

∂ wi
=

1
2|A|

∑
j∈Ni

δij
γij

( 1
|Vj |2

− 1
|V 2
i |

)
. (9)

D. Spatially-Distributed Algorithm for Equitable Partition-
ing

Consider the set U
.=

{
(w1, . . . , wm) ∈

(R)m |
∑m
i=1 wi = 0

}
. Indeed, since adding an identical

value to every weight leaves all power cells unchanged,
there is no loss of generality in restricting the weights to U ;
let Ω .= S ∩ U . Assume the generators’ weight obey a first
order dynamical behavior described by ẇi = ui. Consider
HV an aggregate objective function to be minimized and
impose that the weight wi follows the gradient descent
given by (8). In more precise terms, we set up the following
control law defined over the set Ω

ui = −∂HV

∂wi
(W ), (10)

where we assume that the Power Diagram V(W ) =
{V1, . . . , Vm} is continuously updated. One can prove the
following result.

Theorem 5.4: Assume that the positions of the virtual
generators are distinct, i.e. gi 6= gj for i 6= j. Consider the
gradient vector field on Ω defined by equation (10). Then
generators’ weights starting at t = 0 at W (0) ∈ Ω, and
evolving under (10) remain in Ω and converge asymptotically
to a critical point of the aggregate objective function HV , i.e.
to a vector of weights that yields an equitable Power diagram.

Proof: We first prove that generators’ weights evolving
under (10) remain in Ω and converge asymptotically to the
set of critical points of the aggregate objective function HV .
By assumption, gi 6= gj for i 6= j, thus the Power diagram is
well defined. First, we prove that set Ω is positively invariant



with respect to (10). Recall that Ω = S ∩ U . Noticing that
control law (10) is a gradient descent law, we have

λ−1
Vi
≤ HV (W (t)) ≤ HV (W (0)), i ∈ Im, t ≥ 0.

Since the measures of the power cells depend continuously
on the weights, we conclude that the measures of all power
cells will be bounded away from zero; thus, the weights will
belong to S for all t ≥ 0, i.e. W (t) ∈ S ∀t ≥ 0. Moreover,
the sum of the weights is invariant under control law (10).
Indeed,

∂
∑m
i=1 wi
∂t

= −
m∑
i=1

∂HV

∂wi
=

−
m∑
i=1

∑
j∈Ni

1
2γij

( 1
λ2
Vj

− 1
λ2
Vi

)∫
∆ij

λ(x) dx = 0,

since γij = γji, ∆ij = ∆ji, and j ∈ Ni ⇔ i ∈ Nj . Thus,
we have W (t) ∈ U ∀t ≥ 0. Since W (t) ∈ S ∀t ≥ 0 and
W (t) ∈ U ∀t ≥ 0, we conclude that W (t) ∈ S ∩ U = Ω,
∀t ≥ 0, i.e. set Ω is positively invariant.

Second, HV : Ω 7→ R≥0 is clearly non-increasing along
system trajectories, i.e. ḢV (W ) ≤ 0 in Ω.

Third, all trajectories with initial conditions in Ω are
bounded. Indeed, we have already shown that

∑m
i=1 wi = 0

along system trajectories. This implies that weights remain
within a bounded set: If, by contradiction, a weight could
become arbitrarily large, another weight would become ar-
bitrarily small (since the sum of weights is constant), and
the measure of at least one power cell would vanish, which
contradicts the fact that S is positively invariant.

Finally, by Theorem 5.1, HV is continuously differentiable
in Ω. Hence, by invoking the LaSalle invariance principle,
under the descent flow (10), weights will converge asymp-
totically to the set of critical points of HV , that is not empty
by Theorem 4.1.

Indeed, by Theorem 4.1, we know that all vectors of
weights yielding an equitable partition differ by a common
translation. Thus, the largest invariant set of HV is Ω
contains only one point. This implies that limt→∞W (t)
exists and it is equal to a vector of weights that yields an
equitable Power diagram.

Some remarks are in order.
Remark 5.5: Since, by Theorem 5.1, all critical configura-

tions of HV are generators’ weights with the property that all
power cells have measure equal to λA/m, convergence to an
equitable partition is global with respect to Ω. Indeed, there
is a very natural choice for the initial values of the virtual
power generators. Assuming that at t = 0 agents are in A
and in distinct positions, each agent initializes the position
of its virtual generator to its current position, and initializes
its weight to zero. Then, the initial partition is a Voronoi
tessellation; since λ is positive on A, each initial cell has
nonzero measure, and therefore W (0) ∈ Ω (the sum of the
initial weights is clearly zero).

Remark 5.6: As discussed before, by adopting the algo-
rithm in [10], each agent can compute its Power cell in a
distributed way. Moreover, the partial derivative of HV with

respect to the i-th weight only depends on the weights of
virtual generators with neighboring Power cells. Therefore,
the gradient descent law (10) is indeed a distributed control
law. We mention that, in a Power Diagram, each generator
has an average number of neighbors less then six [11];
therefore, the computation of gradient (10) is scalable with
the number of agents.

VI. DISTRIBUTED ALGORITHMS FOR EQUITABLE
PARTITIONS WITH SPECIAL PROPERTIES

The previous gradient descent law, although effective in
providing a convex equitable partition, can yield long and
“skinny” subregions. In this section we provide algorithms
to obtain convex equitable partitions while optimizing a sec-
ondary objective function. The key idea is that, to obtain an
equitable partition, changing the weights, while maintaining
the generators fixed, is sufficient. Thus, we can use the
degrees of freedom given by the locations of the generators
to optimize secondary cost functionals.

Specifically, define the set

S̃
.=
{(

(g1, w1), . . . , (gm, wm)
)
∈ (A× R)m |

gi 6= gj for all i 6= j, and λVi > 0 ∀i ∈ Im
}
.

(11)

We now assume that both generators’ weights and positions
obey a first order dynamical behavior described by ẇi = uwi
and ġi = ugi . The primary objective is to achieve a convex
equitable partition and is captured, similarly as before, by
the cost functional H̃V : S̃ 7→ R>0: H̃V (GW ) .=

∑m
i=1 λ

−1
Vi

.
We have the following
Theorem 6.1: Given a measure λ, the primary objective

function H̃V is continuously differentiable on S̃, where for
each i ∈ {1, . . . ,m}

∂H̃V

∂ gi
=
∑
j∈Ni

( 1
λ2
Vj

− 1
λ2
Vi

)∫
∆ij

(x− gi)
γij

λ(x) dx,

∂H̃V

∂ wi
=
∑
j∈Ni

( 1
λ2
Vj

− 1
λ2
Vi

)∫
∆ij

1
2γij

λ(x) dx.
(12)

Furthermore, the critical configurations of H̃V are genera-
tors’ locations and weights with the property that all power
cells have measure equal to λA/m.

Proof: The proof of this Theorem is very similar to the
proof of Theorem 5.1; we omit it in the interest of brevity.

The gradient in Theorem 6.1 can be computed in a distributed
way. For short, we define the vectors v±∂H̃i

.= ±∂H̃V∂gi
. Three

possible secondary objectives are discussed in the remainder
of this section.

A. Optimizing the centroidal defect

Define the mass and the centroid of the Power cell Vi, i ∈
Im, as MVi =

∫
Vi
λ(x) dx , and CVi = 1

MVi

∫
Vi
xλ(x) dx. In

this section we are interested in the situation where gi = CVi ,
for all i ∈ Im. We call such a Power Diagram a centroidal
Power Diagram. The main motivation to study centroidal



Power Diagram is that, as it will be extensively discussed in
Sec. VI-C, their cells, under certain conditions, are close in
shape to regular hexagons.

A natural way to try to obtain a centroidal Power Diagram
(or at least a good approximation of it) is to let the positions
of the generators move toward the centroids of the corre-
sponding regions of dominance, when this motion does not
increase the disagreement between the measures of the cells
(i.e. it does not make the time derivative of H̃V positive).
First we introduce a C∞ saturation function as follows:

z(x)=̇
{

0 for x ≤ 0
exp(− 1

x2 ) for x > 0 . (13)

Define the vector vC,gi
.= CVi − gi. Then, we set up

the following control law defined over the set S̃, where
we assume that the partition V(GW ) = {V1, . . . , Vm} is
continuously updated,

ẇi = −∂H̃V

∂wi
,

ġi = vC,giz(vC,gi · v−∂H̃i)
2
π

arctan

[
‖v−∂H̃i‖

2

α

] (14)

In other words, gi moves toward the centroid of its cell
if and only if this motion is compatible with the minimiza-
tion of H̃V . The term z(vC,gi · v−∂H̃i) arctan ‖v−∂H̃i‖

2/α
is needed to make the right hand side of (14) C1 and
compatible with the minimization of H̃V . To prove that
the vector field is C1 it is simply sufficient to observe
that it is the composition and product of C1 functions.
Furthermore, the compatibility condition of the flow (14)
with the minimization of H̃V stems from the fact the ġi = 0
as long as vC,gi · v−∂H̃i ≤ 0, due to the presence of z.
Notice that the right hand side of (14) can be computed in
a distributed way.

As in many algorithms that involve the update of gen-
erators of Voronoi diagrams, it is possible that under con-
trol law (14) there exists a time t∗ and i, j ∈ Im such
that gi(t∗) = gj(t∗). As noticed above, when two power
generators coincide, either the Power diagram is not defined
(when wi(t∗) = wj(t∗)), or there is an empty cell (wi(t∗) 6=
wj(t∗)), and there is not obvious way to specify the behavior
of the control laws for these singularity points. Thus, to make
the set S̃ positively invariant, we have to modify slightly the
update equation for the positions of the virtual generators.
The idea is to stop two generators when they are close and
on a collision course.

Define, for ∆ ∈ R>0, the set

Mi(G,∆) .= {gj ∈ G | ‖gi − gj‖ ≤ ∆, gj 6= gi}.

In other words, Mi is the set of generators within an
(Euclidean) distance ∆ from gi. For δ ∈ R>0, δ < ∆, define
the gain function ψ(ρ, ϑ) : [0,∆]× [0, 2π] 7→ R≥0:

ρ−δ
∆−δ if δ < ρ ≤ ∆ ∧ 0 ≤ ϑ < π,
ρ−δ
∆−δ (1 + sinϑ)− sinϑ if δ < ρ ≤ ∆ ∧ π ≤ ϑ ≤ 2π,
0 if ρ ≤ δ ∧ 0 ≤ ϑ < π,
−ρδ sinϑ if ρ ≤ δ ∧ π ≤ ϑ ≤ 2π,

(15)

where ∧ represents the logical “and”. It is easy to see that
ψ(·) is a continuous function on [0,∆] × [0, 2π] and it is
globally Lipschitz there. Function ψ(·) has the following
motivation. Let ρ be equal to ‖gj − gi‖, and ϑ be the angle
between vectors vC,gi and (gj−gi). If ρ ≤ δ and 0 ≤ ϑ < π,
then gi is close to gj and it is on a collision course, thus
we set the gain to zero. Similar considerations hold for the
other three cases; for example, if ρ ≤ δ and π < ϑ < 2π,
the generators are close, but not on a collision course, thus
the gain is positive.

Thus, we modify control law (14) as follows:

ẇi = −∂H̃V

∂wi

.= ucent,w
i ,

ġi = vC,giz(vC,gi · v−∂H̃i)
2
π

arctan

[
‖v−∂H̃i‖

2

α

]
·∏

gj∈Mi(G,∆)

ψ
(
‖gj − gi‖.](vC,gi , gj − gi)

)
.= ucent,g

i

(16)

where, ](vC,gi , gj − gi) denotes the angle between vectors
vC,gi and (gj − gi); if Mi(G,∆) is the empty set, then we
have an empty product, whose numerical value is 1. Notice
that the right hand side of (16) is Lipschitz continuous, since
it is a product of C1 functions and Lipschitz continuous
functions and it can be still computed in a distributed way
(in fact, it only depends on generators that are neighbors in
the Power diagram, and are within a distance ∆). One can
prove the following result.

Theorem 6.2: Consider the vector field on S̃ defined by
equation (16). Then generators’ positions and weights start-
ing at t = 0 at GW (0) ∈ S̃, and evolving under (16) remain
in S̃ and converge asymptotically to the set of critical points
of the primary objective function H̃V (i.e. to the set of
vectors of generators’ positions and weights that yield an
equitable Power diagram).

Proof: The proof is similar to that of Theorem 5.4 and
we omit it in the interest of brevity.

B. Optimizing the Voronoi defect
In other applications it could be preferable to have a

partition as close as possible to a Voronoi diagram. This
issue is of particular interest for the setting with non-uniform
density, when an equitable Voronoi diagram could fail to
exist [7]. The objective of minimizing the Voronoi defect
of a Power diagram can be translated in the minimization
of the functional K : Rm 7→ R≥0: K(W ) .=

∑m
i=1 w

2
i ;

when wi = 0 for all i ∈ Im, we have K = 0 and
the corresponding Power diagram coincides with a Voronoi
diagram. To include the minimization of the secondary
objective K, it is natural to consider the following update
law for the weights: ẇi = −∂H̃V∂wi

− ∂K
∂wi

. However, H̃V is no
longer a valid Lyapunov function for such system. The idea,
then, is to let the positions of the generators move so that
∂H̃V
∂gi

ġi − ∂H̃V
∂wi

∂K
∂wi

= 0. In other words, the dynamics of the
generators is used to compensate the effect of the term −wi
(present in the weights’ dynamics) on the time derivative of



H̃V . Thus, we set up the following control law, with ε1, ε2

and ε3 positive small constants,

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
,

ġi = wi
∂H̃V

∂wi

v∂H̃i
‖ v∂H̃i‖

2
satε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
(17)

the gain satε1,ε2
(
‖v∂Hi‖

)
is needed to make the right

hand side of (17) Lipschitz continuous, while the
gain sat0,ε3

(
dist(gi, ∂Vi)

)
avoids generators leaving the

workspace. Notice that the right hand side of (17) can be
computed in a distributed way. As before, it is possible that
under control law (17) there exists a time t∗ and i, j ∈ Im
such that gi(t∗) = gj(t∗) and wi(t∗) = wj(t∗). Thus,
similarly as before, we modify the update equations (17)
as follows (where vgj ,gi

.= gj − gi):

ẇi = −∂H̃V

∂wi
− wisatε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
·∏

gj∈Mi(G,∆)

ψ
(
‖vgj ,gi‖,](wi

∂H̃V

∂wi
v∂H̃i , vgj ,gi)

)
.= uvor,w

i ,

ġi = wi
∂H̃V

∂wi

v∂H̃i
‖ v∂H̃i‖

2
satε1,ε2

(
‖v∂H̃i‖

)
sat0,ε3

(
dist(gi, ∂Vi)

)
·

∏
gj∈Mi(G,∆)

ψ
(
‖vgj ,gi‖,](wi

∂H̃V

∂wi
v∂H̃i , vgj ,gi)

)
.= uvor,g

i

(18)

One can prove the following result.
Theorem 6.3: Consider the gradient vector field on S̃

defined by equation (18). Then generators’ positions and
weights starting at t = 0 at GW (0) ∈ S̃, and evolving under
(18) remain in S̃ and converge asymptotically to the set of
critical points of the primary objective function H̃V (i.e. to
the set of vectors of generators’ positions and weights that
yield an equitable Power diagram).

Proof: The proof is similar to that of Theorem 5.4, thus
we omit it in the interest of brevity.

C. Obtaining cells similar to regular hexagons

In many applications it is preferable to avoid long and
thin subregions. For example, in applications where a mobile
agent has to service demands distributed in its own subre-
gion, the maximum travel distance is minimized when the
subregion is a circle. Thus, it is of interest to have subregions
whose shapes show circular symmetry.

Define, now, the distortion functional LV : (A × R)m \
Γcoinc 7→ R≥0:

∑m
i=1

∫
Vi
‖x − gi‖2λ(x)dx. In [12] it is

shown that, when m is large, for the centroidal Voronoi
diagram (i.e. centroidal Power Diagram with equal weights)
that minimizes LV , all cells are approximately congruent to a
regular hexagon, i.e., to a polygon with considerable circular
symmetry (see Section VII for a more in-depth discussion
about circular symmetry).

Indeed, it is possible to obtain a Power diagram that is
close to a centroidal Voronoi Diagram by combining control
laws (16) and (18). In particular, we set up the following
(distributed) control law:

ẇi =ucent,w
i + uvor,w

i ,

ġi =ucent,g
i + uvor,g

i .
(19)

Combining the results of Theorem 6.2 and Theorem 6.3,
we argue that with control law (19) it is possible to obtain
equitable partitions with cells close to regular hexagons.

VII. SIMULATIONS AND DISCUSSION

In this section we verify, through simulations, how ef-
fective is the optimization of the secondary objectives. Due
to space constraint, we discuss only control law (19). We
introduce two criteria to judge, respectively, closeness to
Voronoi Diagram, and circular symmetry of a polygon.

A. Closeness to Voronoi Diagrams
In a Voronoi diagram, the intersection between the bisector

of two neighboring generators gi and gj and the line segment
joining gi and gj is the midpoint gvor

ij
.= (gi + gj)/2. Then,

if we define gpow
ij as the intersection, in a Power diagram,

between the bisector of two neighboring generators gi and
gj and the line segment joining gi and gj , a possible way to
measure the distance η of a Power diagram from a Voronoi
diagram is the following:

η
.=

1
2N

m∑
i=1

∑
j∈Ni

‖gpow
ij − gvor

ij ‖
0.5γij

(20)

where N is the number of neighboring relationships and, as
before, γij = ‖gj − gi‖. Clearly, if the Power diagram is
also a Voronoi diagram (i.e. if all weights are equal), we
have η = 0. We will also refer to η as the Voronoi defect of
a Power diagram.

B. Closeness to Regular Hexagons
A quantitative manifestation of circular symmetry is the

classical isoperimetric inequality which says that among all
planar objects of a given perimeter, the circle encloses the
largest area. More precisely, given a plane region V with
perimeter pV and area |V |, then p2

V − 4π|V | ≥ 0, and
equality holds if and only if V is a circle. Then, we can
define the isoperimetric quotient as follows QV = 4π|V |

p2V
; by

definition, QV ≤ 1, with equality only in the case of the
circle. Interestingly, for a regular n-gon the isoperimetric
quotient Qn is Qn = π

n tan π
n

, which converges to 1 for
n → ∞. Accordingly, given a partition A = {Ai}mi=1, we
define its isoperimetric quotient QA as QA

.= 1
m

∑
QAi .

C. Simulation results
We are now in position to study the performance of control

law (19), whose purpose is to provide equitable partitions
that are close to Voronoi Diagrams and in which cells have
high circular symmetry.

In all simulations we assume that 10 agents provide
service in the unit square A. Agents’ initial positions are
independently and uniformly distributed over A; the initial



TABLE I
PERFORMANCE OF CONTROL LAW (19).

λ E [ε] max ε E [η] max η E [Q] minQ

unif 3.8 10−4 0.016 0.01 0.03 0.73 0.66
gauss 3 10−3 5.3 10−3 0.02 0.04 0.75 0.69

position of each virtual generator coincides with the initial
position of the corresponding agent, and all weights are
initialized to zero. Time is discretized with a step dt = 0.01,
and each simulation run consists of 800 iterations (thus, the
final time is T = 8). Define the area error ε as the difference,
at T = 8, between the measure of the region of dominance
with maximum measure and the measure of the region of
dominance with minimum measure.

First, we consider a measure λ uniform over A, in partic-
ular λ ≡ 1. Therefore, we have λA = 1 and vehicles should
reach a partition in which each region of dominance has
measure equal to 0.1. For this case, we run 50 simulations.

Then, we considered a measure λ that follows a gaussian
distribution, namely λ(x, y) = e−5((x−0.8)2+(y−0.8)2), whose
peak is at the north-east corner of the unit square. Therefore,
we have λA ≈ 0.336, and vehicles should reach a partition
in which each region of dominance has measure equal to
0.0336. For this case, we run 20 simulations.

Table I summarizes simulation results for the uniform
λ (λ=unif) and the gaussian λ (λ=gaussian). Expectation
and worst case values of, respectively, area error ε, Voronoi
error η and isoperimetric quotient QA are with respect to,
respectively, 50 and 20 runs. Notice that for both measures,
after 800 iterations, (i) the worst case area error is within
16% from the desired measure of dominance regions, (ii)
the worst case η is very close to 0, and, finally, (iii)
cells have, approximately, the circular symmetry of squares
(since Q4 ≈ 0.78). Therefore, convergence to a convex
equitable partition with the desired properties (i.e., closeness
to Voronoi Diagrams and circular symmetry) seems to be
robust. Figure 3 shows the typical equitable partitions that
are achieved with control law (19).

(a) Typical equipartition of A
for φ(x, y) = 1.

(b) Typical equipartition
of A for φ(x, y) =

e−5((x−0.8)2+(y−0.8)2).

Fig. 3. Typical equipartitions achieved by using control law (19). Yellow
dots are the virtual generators, while the gray triangles are the centroids.
Notice how each bisector intersects the line segment joining the two
corresponding power neighbors almost at the midpoint; hence both partitions
are very close to Voronoi partitions.

VIII. CONCLUSION

In this paper an algorithm converging globally and prov-
ably to an equitable partition of the workspace is presented,
together with extensions that take into account the desire to
reach an equitable partition where the cells are as regular as
possible. Possible applications have been rapidly sketched,
and simulations results of highly non trivial configurations
have been discussed showing that the algorithm and its
generalizations provide global convergence to an equitable
partition, while at the same time locally minimizing the
distortion of the cells, according to several measures of
distortion. Possible future investigations will include the
extension of this set-up to the case of non-holonomic agents’
dynamics, the development of new applications and, on the
theoretical side, the discovery of novel properties of Voronoi
and Power diagrams.
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