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Abstract— In this paper, we present a discretization algorithm
for the solution of stochastic optimal control problems with
dynamic, time-consistent risk constraints. Previous works have
shown that such problems can be cast as Markov decision
problems on an augmented state space where a “constrained”
form of Bellman’s recursion can be applied. However, even
if both the state space and action spaces for the original opti-
mization problem are finite, the augmented state in the induced
MDP problem contains state variables that are continuous. Our
approach is to apply a uniform grid discretization approach.
This requires the development of novel Lipschitz bounds for
“constrained” dynamic programming operators. We show that
convergence to the optimal value functions is linear in the
step size, which is the same convergence rate for discretization
algorithms for unconstrained dynamic programming operators.
Simulation experiments are presented and discussed.

I. INTRODUCTION

Constrained stochastic optimal control problems naturally
arise in decision-making problems where one has to consider
multiple objectives. Instead of introducing an aggregate
utility function that has to be optimized, one consider a
setup where one cost function is to be minimized while
keeping the other cost functions below some given bounds.
Application domains are broad and include engineering,
finance, and logistics. Within a constrained framework, the
most common setup is, arguably, the optimization of a
risk-neutral expectation criterion subject to a risk-neutral
constraint [5], [1]. This model, however, is not suitable
in scenarios where risk-aversion is a key feature of the
problem setup. To introduce risk aversion, in [1] the au-
thors studied stochastic optimal control problems with risk
constraints, where risk is modeled according to dynamic,
time-consistent risk metrics [6], [17]. These metrics have
the desirable property of ensuring rational consistency of
risk preferences across multiple periods [17]. (In contrast,
traditional static risk metrics, such as conditional value at
risk, can lead to potentially “inconsistent” behaviors, see
[8] and references therein.) In particular, in [1], the authors
developed a dynamic programming approach that allows
to (formally) compute the optimal costs by value iteration
via a constrained dynamic programming operator. The key
idea is that due to the compositional structure of dynamic
risk constraints, the optimization problem can be cast as
a Markov decision problem (MDP) on an augmented state
space where Markov policies are optimal (as opposed to the
original problem) and Bellman’s recursion can be applied.
Henceforth, we will refer to such augmented MDP as AMDP.
However, even if both the state space and action spaces
for the original optimization problem are assumed to be
finite, the augmented state in AMDP contains state variables
that are continuous and lie in bounded subsets of the real
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numbers. Hence, apart from a few cases when an analytical
solution is available, the problem must be solved numerically.

Accordingly, the objective of this paper is to develop a
numerical method for the solution of stochastic optimal con-
trol problems with dynamic, time-consistent risk measures.
The approach is to discretize the continuous states in AMDP.
Numerical algorithms for the solution of continuous MDPs
is indeed a fairly mature field. In [9], [10], [11], multi-grid
state/action space discretization methods are developed with
bounds available on how fine the discretization should be
in order to achieve a desired accuracy. In [12], the grid for
discretization is chosen via randomized sampling techniques
and Monte Carlo methods. In [13], the value functions are
approximated by a finite number of basis functions. Variable
resolution grid sampling techniques have been proposed in
[14], [15], [16]. However, in general, these results assume
that the dynamic programming operator is unconstrained,
i.e., actions and future states are only constrained to lie
in their respective feasible sets. In contrast, the dynamic
programming operator for AMDP constrains actions and
future states in a more complicated fashion (see Section II for
more details). This precludes the application of current ap-
proximation algorithms to the numerical solution of AMDP.

Our approach is to extend the uniform grid discretiza-
tion approximation developed in [11]. This requires the
development of novel Lipschitz bounds for constrained dy-
namic programming operators. We show that convergence
is linear in the step size, which is the same convergence
rate for discretization algorithms for unconstrained dynamic
programming operators [11]. The importance of our result is
fourfold. First, we provide a sound numerical method for the
solution of AMDP. Second, our results provide the basis to
develop more sophisticated approximation algorithms (e.g.,
variable grid size, reinforcement learning, etc.) for the so-
lution of stochastic optimal control problems with dynamic,
time-consistent risk constraints. Third, a particular type or
dynamic, time-consistent “risk” constraint is, of course, the
risk neutral expectation. Hence, our results provide as a
particular case a numerical algorithm to solve the dynamic
programing equations that arise in traditional constrained
stochastic optimal control problems [5]. To the best of our
knowledge, this is the first practical algorithm to solve
such dynamic programming equations. Finally, the ideas and
techniques introduced in the current paper could be useful
for the development of approximation algorithms for other
types of constrained dynamic programming operators.

The rest of the paper is structured as follows. In Sec-
tion II we present background material for this paper, in
particular about dynamic, time-consistent risk metrics and
stochastic optimal control with dynamic risk constraints [1].
In Section III we present and theoretically study a uniform
grid approximation algorithm for the augmented MDP; in
particular, we show that the error bound is linear to the



discretization step size. In Section IV, we study by numerical
simulations the performance of the proposed algorithm and
discuss details of implementations using Branch and Bound
techniques. Finally, in Section V, we draw our conclusions
and offer directions for future work.

II. PRELIMINARIES

In this section we provide some background for the the-
ory of dynamic, time-consistent risk metrics and stochastic
optimal control with dynamic risk constraints, on which we
will rely extensively later in the paper.

A. Notations
In this paper, given a real-valued function f , dom(f)

denotes its domain and epif denotes its epigraph (i.e., the
set of points lying on or above its graph). Let ν and µ be
two probability measures on the same measurable space, then
ν � µ denotes that ν is absolutely continuous with respect
to µ (i.e., ν(E) = 0 for every set E for which µ(E) = 0).

B. Markov Decision Processes
A finite Markov Decision Process (MDP) is a four-tuple

(S,U,Q,U(·)), where S, the state space, is a finite set; U ,
the control space, is a finite set; for every x ∈ S, U(x) ⊆ U
is a nonempty set which represents the set of admissible
controls when the system state is x; and, finally, Q(·|x, u)
(the transition probability) is a conditional probability on S
given the set of admissible state-control pairs, i.e., the sets
of pairs (x, u) where x ∈ S and u ∈ U(x).

Define the space Hk of admissible histories up to time
k by Hk = Hk−1 × S × U , for k ≥ 1, and H0 = S.
A generic element h0,k ∈ Hk is of the form h0,k =
(x0, u0, . . . , xk−1, uk−1, xk). Let Π be the set of all de-
terministic policies with the property that at each time k
the control is a function of h0,k. In other words, Π :={
{π0 : H0 → U, π1 : H1 → U, . . .}|πk(h0,k) ∈

U(xk) for all h0,k ∈ Hk, k ≥ 0
}

.

C. Dynamic, time-consistent, risk measures
Consider a probability space (Ω,F , P ), a filtration F1 ⊂

F2 · · · ⊂ FN ⊂ F , and an adapted sequence of random
variables Zk, k ∈ {0, · · · , N}. We assume that F0 = {Ω, ∅},
i.e., Z0 is deterministic. In this paper we interpret the
variables Zk as stage-wise costs. For each k ∈ {1, · · · , N},
define the spaces of random variables with finite pth order
moment as Zk := Lp(Ω,Fk, P ), p ∈ [1,∞]; also, let
Zk,N := Zk × · · · × ZN .

Roughly speaking, a dynamic risk measure is said time
consistent if it is such that when a Z cost sequence is deemed
less risky than a W cost sequence from the perspective of a
future time k, and both sequences yield identical costs from
the current time l to the future time k, then the Z sequence
is deemed as less risky at the current time l. It turns out that
dynamic, time-consistent risk metrics can be constructed by
“compounding” one-step conditional risk measures, which
are defined as follows.

Definition II.1 (Coherent one-step conditional risk mea-
sures). A coherent one-step conditional risk measures is a
mapping ρk : Zk+1 → Zk, k ∈ {0, . . . , N}, with the
following four properties:

• Convexity: ρk(λZ + (1 − λ)W ) ≤ λρk(Z) + (1 −
λ)ρk(W ), ∀λ ∈ [0, 1] and Z,W ∈ Zk+1;

• Monotonicity: if Z ≤ W then ρk(Z) ≤ ρk(W ),
∀Z,W ∈ Zk+1;

• Translation invariance: ρk(Z+W ) = Z+ρk(W ), ∀Z ∈
Zk and W ∈ Zk+1;

• Positive homogeneity: ρk(λZ) = λρk(Z), ∀Z ∈ Zk+1

and λ ≥ 0.

Then, the following results characterize dynamic, time-
consistent risk metrics [6].

Theorem II.2 (Dynamic, time-consistent risk measures).
Consider, for each k ∈ {0, · · · , N}, the mappings ρk,N :
Zk,N → Zk defined as

ρk,N = Zk + ρk(Zk+1 + ρk+1(Zk+2 + . . .+

ρN−2(ZN−1 + ρN−1(ZN )) . . .)),
(1)

where the ρk’s are coherent one-step risk measures. Then,
the ensemble of such mappings is a time-consistent dynamic
risk measure.

In this paper we consider a (slight) refinement of the
concept of dynamic, time-consistent risk measure, which
involves the addition of a Markovian structure [6].

Definition II.3 (Markov dynamic risk measures). Let V :=
Lp(S,B, P ) be the space of random variables on S with
finite pth moment. Given a controlled Markov process {xk},
a Markov dynamic risk measure is a dynamic, time-consistent
risk measure if each coherent one-step risk measure ρk :
Zk+1 → Zk in equation (1) can be written as:

ρk(V (xk+1)) = σk(V (xk+1), xk, Q(xk+1|xk, uk)), (2)

for all V (xk+1) ∈ V and u ∈ U(xk), where σk is a coherent
one-step risk measure on V (with the additional technical
property that for every V (xk+1) ∈ V and u ∈ U(xk)
the function xk 7→ σk(V (xk+1), xk, Q(xk+1|xk, uk)) is an
element of V).

In other words, in a Markov dynamic risk measures, the
evaluation of risk is not allowed to depend on the whole past.

D. Stochastic optimal control with dynamic, time-consistent
risk constraints

Consider an MDP and let c : S × U → R and d : S ×
U → R be functions which denote costs associated with
state-action pairs. Given a policy π ∈ Π, an initial state
x0 ∈ S, and an horizon N ≥ 1, the cost function is defined
as

JπN (x0) := E
[∑N−1

k=0 c(xk, uk)
]
,

and the risk constraint is defined as

RπN (x0) := ρ0,N

(
d(x0, u0), . . . , d(xN−1, uN−1), 0

)
,

where ρk,N (·), k ∈ {0, . . . , N−1}, is a Markov dynamic risk
measure (for simplicity, we do not consider terminal costs,
even though their inclusion is straightforward). The problem
is then as follows:

Optimization problem OPT — Given an initial
state x0 ∈ S, a time horizon N ≥ 1, and a risk
threshold r0 ∈ R, solve

min
π∈Π

JπN (x0)

subject to RπN (x0) ≤ r0.



If problem OPT is not feasible, we say that its value
is ∞. In [1] the authors developed a dynamic program-
ing approach to solve this problem. To define the value
functions, one needs to define the tail subproblems. For a
given k ∈ {0, . . . , N − 1} and a given state xk ∈ S, we
define the sub-histories as hk,j := (xk, uk, . . . , xj) for j ∈
{k, . . . , N}; also, we define the space of truncated policies
as Πk :=

{
{πk, πk+1, . . .}|πj(hk,j) ∈ U(xj) for j ≥

k
}

. For a given stage k and state xk, the cost of the
tail process associated with a policy π ∈ Πk is simply
JπN (xk) := E

[∑N−1
j=k c(xj , uj)

]
. The risk associated with

the tail process is:

RπN (xk) := ρk,N

(
d(xk, uk), . . . , d(xN−1, uN−1), 0

)
,

The tail subproblems are then defined as

min
π∈Πk

JπN (xk) (3)

subject to RπN (xk) ≤ rk(xk), (4)

for a given (undetermined) threshold value rk(xk) ∈ R (i.e.,
the tail subproblems are specified up to a threshold value).

For each k ∈ {0, . . . , N − 1} and xk ∈ S, we define the
set of feasible constraint thresholds as

Φk(xk) := [RN (xk), RN,k], ΦN (xN ) := {0},

where RN (xk) := minπ∈Πk
RπN (xk), and RN,k = (N −

k)ρmax. The value functions are then defined as follows:
• If k < N and rk ∈ Φk(xk):

Vk(xk, rk) = min
π∈Πk

JπN (xk)

subject to RπN (xk) ≤ rk.

• iI k ≤ N and rk /∈ Φk(xk):

Vk(xk, rk) =∞;

• when k = N and rN = 0:

VN (xN , rN ) = 0.

Let B(S) denote the space of real-valued bounded func-
tions on S, and B(S × R) denote the space of real-valued
bounded functions on S × R. For k ∈ {0, . . . , N − 1},
we define the dynamic programming operator Tk[Vk+1] :
B(S × R) 7→ B(S × R) according to the equation:

Tk[Vk+1](xk, rk) := inf
(u,r′)∈Fk(xk,rk)

{
c(xk, u) +∑

xk+1∈S
Q(xk+1|xk, u)Vk+1(xk+1, r

′(xk+1))

}
,

(5)

where Fk is the set of control/threshold functions:

Fk(xk,rk) :=

{
(u, r′)

∣∣∣u ∈ U(xk), r′(x′) ∈ Φk+1(x′) for

all x′ ∈ S, and d(xk, u) + ρk(r′(xk+1)) ≤ rk
}
.

If Fk(xk, rk) = ∅, then Tk[Vk+1](xk, rk) =∞.

Note that, for a given state and threshold constraint, set
Fk characterizes the set of feasible pairs of actions and
subsequent constraint thresholds.

Theorem II.4 (Bellman’s equation with risk constraints).
For all k ∈ {0, . . . , N−1} the optimal cost functions satisfy
the Bellman’s equation:

Vk(xk, rk) = Tk[Vk+1](xk, rk).

E. Representation theorems
A key result that will be heavily exploited in this paper is

the following representation theorem for coherent one-step
conditional risk measures.

Theorem II.5. ρk : Zk+1 → Zk is a coherent one-step
conditional risk measure if and only if

ρk(Z(xk+1)) = sup
ξ∈Uk+1(xk,Q(xk+1|xk,uk))

∑
x′∈S

ξ(x′)Z(x′)

(6)

where
Uk+1(xk, Q) ={
ξ ∈M | ξ � Q,

∑
x′∈S

ξ(x′)Z(x′) ≤ ρk(Z), ∀Z ∈ Zk+1

}
,

and

M =

{
ξ ∈ R|S||

∑
x′∈S

ξ(x′) = 1, ξ(x′) ≥ 0, ∀x′ ∈ S

}
.

For Z ∈ Zk ⊆ Lp(Ω,F , P ), Uk+1(xk, Q) is a subset
of Lq(Ω,F , P ), where Lq(Ω,F , P ) is the dual space of
Lp(Ω,F , P ), for 1/p+ 1/q = 1 and p, q ∈ [1,∞].

Proof. Refer to Theorem 6.4 in [17] and references therein.

The result essentially says that any coherent risk measure
can be interpreted as an expectation taken with respect to a
worst-case measure, which is chosen from a suitable set of
test measures [8].

Furthermore, by Moreau-Rockafellar Theorem (Theorem
7.4 in [17]), it implies Uk+1(xk, Q(xk+1|xk, uk)) = ∂ρk(0),
when the transition probability kernel is Q(xk+1|xk, uk).
The next Theorem implies a basic duality result on coherent
risk measures.

Theorem II.6. ρk : Zk+1 → Zk is a coherent one-
step conditional risk measure, if and only if there exists
a bounded, non-empty, weakly∗ compact and convex set:
Uk+1(xk, Q(xk+1|xk, uk)) such that equation (6) holds.
Furthermore, if ρk is a coherent risk measure, then it is con-
tinuous and sub-differentiable in Zk+1, also if dom(ρk) =
{Z ∈ Zk+1 : ρk(Z) < ∞} has an non-empty interior, then
ρk is finite valued.

Proof. See Proposition 6.5, Theorem 6.6 and Theorem 6.7
in [17].

Since the analysis of this paper is restricted to
finite state and action spaces, from this theorem,
Uk+1(xk, Q(xk+1|xk, uk)) = ∂ρk(0) is a non-empty,
convex, bounded and compact set in R|S|. By extreme value
theorem, the supremum in equation (6) is attained.



III. DISCRETIZATION OF THE CONTINUOUS RISK
THRESHOLDS IN CONSTRAINED DYNAMIC PROGRAMMING

In the previous section, we have shown that the constrained
stochastic optimal control problem can be solved using value
iteration (See Theorem II.4). However, the constant risk
threshold rk in value function Vk(xk, rk), k ∈ {0, . . . , N−1}
is a continuous state. This results in numerical complexity
when value iteration is performed. Therefore, in this section,
we consider a numerical approximation algorithm using
discretization. First of all, from the dynamic programming
operator possess several nice properties:

Lemma III.1. Let V, Ṽ ∈ B(S×R) be real-valued bounded
functions and Tk[V ] : B(S×R) 7→ B(S×R) be a dynamic
programming operator in given in B(S ×R) whose expres-
sion is given by equation (5) for any k ∈ {0, . . . , N − 1}.
Then, the following statement holds:

1) Monotonicity: For any (x, r) ∈ B(S × R), if V ≤ Ṽ ,
then Tk[V ](x, r) ≤ Tk[Ṽ ](x, r).

2) Constant shift: For any real number L and (x, r) ∈
B(S ×R), Tk[V +L](x, r) = Tk[V ](x, r) +L, where
(V + L)(x, r) := V (x, r) + L, ∀ (x, r) ∈ B(S × R).

3) Non-expansivity: For all V, Ṽ ∈ B(S×R), ‖Tk[V ]−
Tk[Ṽ ]‖∞ ≤ ‖V − Ṽ ‖∞, where ‖ · ‖∞ is the infinity
norm of a function.

Next, we introduce the method for constrained dynamic
programming with discretized risk thresholds and updates.

A. Dynamic programming with discretized risk thresholds
and updates

For k ∈ {0, . . . , N − 1}, we will partition Φk(xk) into
t+1 partitions using t grid points: {r̂(1)

k , . . . , r̂
(t)
k } for every

fixed xk ∈ S. The step size of discretization of the risk
thresholds rk is ∆. For τ ∈ {0, . . . , t}, define the discretized
region Φ

(τ)
k (xk) = [r

(τ)
k , r

(τ+1)
k ), where r(0)

k = RN (xk) and
r

(t+1)
k = RN,k + ε, for arbitrarily small ε > 0. We also

define Φk(xk) = {r(0)
k , . . . , r

(t+1)
k } to be a finite state of

risk threshold at step k. Let τ ∈ {0, . . . , t} such that rk ∈
Φ

(τ)
k (xk). Now, define the approximation operator TD∆,k for

xk ∈ S, rk ∈ Φ
(τ)
k (xk):

TD∆,k[V ](xk, rk) := T̄D∆,k[V ](xk, r
(τ)
k ) (7)

where

T̄D∆,k[V ](xk, rk) := min
(u,rD,′)∈FD

k (xk,rk)

{
c(xk, u)

+
∑
x′∈S

Q(x′|xk, u)V (x′, rD,′(x′))

}
,

(8)

where FDk is the set of control/threshold functions:

FDk (xk,rk) :=

{
(u, r′)

∣∣∣∣u ∈ U(xk), rD,′(x′) ∈ Φk+1(x′),

∀x′ ∈ S, d(xk, u) + ρk(rD,′(xk+1)) ≤ rk
}
.

If FDk (xk, rk) = ∅, then T̄D∆,k[Vk+1](xk, rk) =∞.
By construction, we can see the set of optimal solution of

TD∆,k[V ](xk, rk) is a subset of feasible space for the problem

described by Tk[V ](xk, rk) (since FDk (xk, rk) ⊆ Fk(xk, rk)

and r
(τ)
k ≤ rk). Because the solution of TD∆,k[V ](xk, rk)

is an infimum over a finite set, the problem in (7) is a
minimization. Also, based on similar proofs, the dynamic
programming operator TD∆,k[V ] satisfies all the properties
given in Lemma III.1. The main result of this section is to
obtain a bound of the differences between Tk[V ](xk, rk) and
TD∆,k[V ](xk, rk), which will be given in the next subsection.

B. Error bound analysis
First, we have the following assumptions for the following

analysis:
Assumptions for discretization analysis:

1) There exists Mc,Md > 0 such that

|c(x, u)− c(x, ũ)| ≤Mc|u− ũ|,

|d(x, u)− d(x, ũ)| ≤Md|u− ũ|,

for any x ∈ S, u, ũ ∈ U(x).
2) For any u, ũ ∈ U(xk), there exists Mq > 0

such that∑
x′∈S
|Q(x′|xk, u)−Q(x′|xk, ũ)| ≤Mq|u−ũ|.

Assumptions (1) to (2) are the critical assumptions required
to perform error bound analysis in this section. First, we
have following Proposition showing the Lipschsitz-ness of
set-valued mapping Uk+1(xk, Q).

Proposition III.2. For any ξ ∈ Uk+1(xk, Q), there exists a
Mξ > 0 such that for some ξ̃ ∈ Uk+1(xk, Q̃),∑

x′∈S
|ξ(x′)− ξ̃(x′)| ≤Mξ

∑
x′∈S

∣∣∣Q(x′)− Q̃(x′)
∣∣∣ .

Proof. From Theorem II.6, we know that Uk+1(xk, Q) is a
closed, bounded, convex set of probability mass functions.
Since any conditional probability mass function Q is in the
interior of dom(Uk+1) and the graph of Uk+1(xk, Q) is
closed, by Theorem 2.7 in [18], Uk+1(xk, Q) is a Lipschitz
set-valued mapping with respect to the Hausdorff distance.
Thus, for any ξ ∈ Uk+1(xk, Q), the following expression
holds for some Mξ > 0:

inf
ξ̂∈Uk+1(xk,Q̃)

∑
x′∈S
|ξ(x′)−ξ̂(x′)| ≤Mξ

∑
x′∈S

∣∣∣Q(x′)− Q̃(x′)
∣∣∣ .

Next, we want to show that the infimum of the left side
is attained. Since the objective function is convex, and
Uk+1(xk, Q̃) is a convex compact set, there exists ξ̃ ∈
Uk+1(xk, Q̃) such that infimum is attained.

Next, we provide a Lemma that characterizes an upper
bound for the magnitude of the value functions.

Lemma III.3. For k ∈ {0, . . . , N −1}, the following bound
is given for the value function Vk(xk, rk): ‖Vk‖∞ ≤ (N −
k)cmax, where

cmax := max
(x,u)∈S×U

|c(x, u))|. (9)

Proof. First, from the definition of VN (xN , rN ), we know
that VN (xN , rN ) = 0 for any xN ∈ S, rN ∈ ΦN (xN ).
Therefore, the above inequality holds for the for k = N . For



j ∈ {0, . . . , N−1}, since |c(xj , uj)| ≤ cmax for any xj ∈ S,
uj ∈ U(xj), it implies ‖Tj [VN ]‖∞ ≤ cmax. Furthermore,

‖Vj‖∞ =‖Vj − VN‖∞
≤‖Tj [Vj+1]− Tj [VN ]‖∞ + ‖Tj [VN ]− VN‖∞
≤‖Vj+1 − VN‖∞ + cmax = ‖Vj+1‖∞ + cmax.

The first inequality is due to triangle inequality and Theorem
II.4, the second inequality is due to the non-expansivity
property in Lemma III.1 and both equalities in the above
expression are due to VN (x, r) = 0. Thus by recursion, we
get

‖Vk‖∞ =

N−1∑
j=k

(‖Vj‖∞ − ‖Vj+1‖∞).

and the proof is completed by noting that ‖Vj‖∞ −
‖Vj+1‖∞) ≤ cmax for j ∈ {k, . . . , N − 1}.

To prove the main result, we need the following technical
Lemma.

Lemma III.4. For every given xk ∈ S and r̃k, rk ∈ Φk(xk),
suppose Assumptions (1) to (2) hold. Also, define r′ :=
{r′(x′)}x′∈S ∈ R|S| and r̂′ := {r̂′(x′)}x′∈S ∈ R|S|. If
Fk(xk, rk) and Fk(xk, r̃k) are non-empty sets, then for any
(u, r′) ∈ Fk(xk, rk), there exists (û, r̂′) ∈ Fk(xk, r̃k) such
that for some Mr,k > 0,

|u− û|+
∑
x′∈S
|r′(x′)− r̂′(x′)| ≤Mr,k|rk − r̃k|. (10)

Proof. First, we want to show that α(u, r′) :=
d(xk, u) + ρk(r′(xk+1)) is a Lipschitz function. Define

{ξ∗(x′)}x′∈S ∈ arg maxξ∈Uk+1(xk,Q(xk+1|xk,u))

{
d(xk, u) +∑

x′∈S ξ(x
′)(r′(x′))

}
. Then, there exists a ξ̃ ∈

Uk+1(xk, Q(xk+1|xk, ũ)) such that the following
expressions hold:

α(u, r′)− α(ũ, r̃′)

=d(xk, u) + ρk(r′(xk+1))− d(xk, ũ)− ρk(r̃′(xk+1))

≤d(xk, u)− d(xk, ũ) +
∑
x′∈S

(ξ∗(x′)− ξ̃(x′))r′(x′)

+
∑
x′∈S

ξ̃(x′)(r′(x′)− r̃′(x′))

≤|d(xk, u)− d(xk, ũ)|+
∑
x′∈S
|r′(x′)− r̃′(x′)|

+ max
x∈S
|r′(x)|

∑
x′∈S
|ξ∗(x′)− ξ̃(x′)|.

(11)

The first equality follows from definitions of coherent risk
measures. The first inequality is due to Theorem II.5 and
the definition of ξ∗ ∈ Uk+1(xk, Q(xk+1|xk, u)). The second
inequality is due to the fact that ξ̃ is a probability mass
functions in Uk+1(xk, Q(xk+1|xk, ũ)). Then, by Proposition
III.2, there exists Mξ > 0 such that∑
x′∈S
|ξ∗(x′)−ξ̃(x′)| ≤Mξ

∑
x′∈S
|Q(x′|xk, u)−Q(x′|xk, ũ)| .

Furthermore, by Assumptions (1) to (2) and the definition of
Φk+1(xk+1), expression (11) implies

α(u, r′)−α(ũ, r̃′) ≤MA,k

(
|ũ− u|+

∑
x′∈S
|r̃′(x′)− r′(x′)|

)
where

MA,k = max
{
Md +MqRN,kMξ, 1

}
.

By a symmetric argument, we can also show that

α(ũ, r̃′)−α(u, r′) ≤MA,k

(
|ũ− u|+

∑
x′∈S
|r̃′(x′)− r′(x′)|

)
.

Thus, by combining both arguments, we have shown that
α(u, r′) is a Lipschitz function. Next, for any (u, r′) ∈
Fk(xk, rk), where

Fk(xk, r) =

{
(u, r′)| u ∈ U(xk), r′(x′) ∈ Φk+1(x′),

∀x′ ∈ S, α(u, r′) ≤ r
}
,

consider the following optimization problem:

Pxk,u,r′(r) = inf
(ũ,r̃′)∈Fk(xk,r)

|ũ− u|+
∑
x′∈S
|r̃′(x′)− r′(x′)|.

Since (u, r′) is a feasible point of Fk(xk, rk), Pxk,u,r′(rk) =
0. By our assumptions, both U(xk) and Φk+1(xk+1) are
compact sets of real numbers. Note that both |ũ − u| +∑
x′∈S |r̃′(x′)− r′(x′)| and α(ũ, r̃′) are Lipschitz functions

in (ũ, r̃′). Also, consider the sub-gradient of f(ũ, r̃′, r) :=
α(ũ, r̃′)− r1:

∂f(ũ, r̃′, r) =
⋂

(û,r̂′,r̂)∈dom(f)

{[
g1

g2

g3

]
∈ R|U | × R|S| × R :

f(û, r̂′, r̂) ≥ f(ũ, r̃′, r) +

[
g1

g2

g3

]T [ ũr̃′
r

]
−

 ûr̂′
r̂

 .

Since α(ũ, r̃′) − r is differentiable on r, the third ele-
ment of ∂f(ũ, r̃′, r) is a singleton and it equals to {−1}.
Next, consider the sub-gradient of h(ũ, r̃′, r) = |ũ − u| +∑
x′∈S |r′(x′)−r̃′(x′)|. By identical arguments, we can show

that the set of the third element of ∂h(ũ, r̃′, r) is a singleton
and it equals to {0}. Therefore, Theorem 4.2 in [19] implies
Pxk,u,r′(r) is strictly differentiable (Lipschitz continuous) in
r 2. Then, for any (u, r′) ∈ Fk(xk, rk), there exists Mr,k > 0
such that

inf
(ũ,r̃′)∈Fk(xk,r̃k)

|ũ−u|+
∑
x′∈S
|r′(x′)−r̃′(x′)| ≤Mr,k|r̃k−rk|.

Finally we want to show that the infimum on the left
side of the above expression is attained. First, |ũ − u| +∑
x′∈S |r′(x′)− r̃′(x′)| is coercive and continuous in (ũ, r̃′).

By Example 14.29 in [20], this function is a Caratheodory

1 A sub-gradient of a function f : X → R at a point x0 ∈ X is a real
vector g such that for all x ∈ X , f(x)− f(x0) ≥ gT (x− x0), ∀x ∈ X .

2 Theorem 4.2 in [19] implies both ∂Pxk,u,r
′ (r), ∂∞Pxk,u,r

′ (r) ⊆
{0} for rk ∈ Φk(rk). This result further implies Pxk,u,r

′ (r) is strictly
differentiable. For details, please refer to this paper.



integrand and is also a normal integrand. Furthermore, since
Fk(xk, r̃k) is a closed set (since U(xk) is a finite set,
Φk+1(xk+1) is a compact set and the constraint inequality
is non-strict)and α(ũ, r̃′) − r̃k is a normal integrand (see
the proof of Theorem IV.2 in [1]), by Theorem 14.36 and
Example 14.32 in [20], one can show that the following
indicator function:

Ixk
(ũ, r̃′, r̃k) :=

{
0 if (ũ, r̃′) ∈ Fk(xk, r̃k)
∞ otherwise

is a normal integrand. Furthermore, by Proposition 14.44 in
[20], the function

gxk
(ũ, r̃′, r̃k) := |ũ−u|+

∑
x′∈S
|r′(x′)−r̃′(x′)|+Ixk

(ũ, r̃′, r̃k)

is a normal integrand. Also, inf ũ gxk
(ũ, r̃′, r̃k) =

inf(ũ,r̃′)∈Fk(xk,r̃k) |ũ − u| +
∑
x′∈S |r′(x′) − r̃′(x′)|. By

Theorem 14.37 in [20], there exists (û, r̂′) ∈ Fk(xk, r̃k)
such that (û, r̂′) argmin gxk

(ũ, r̃′, r̃k). Furthermore, the right
side of the above equality is finite since Fk(xk, r̃k) is a
non-empty set. The definition of Ixk

(û, r̂′, r̃k) implies that
(û, r̂′) ∈ Fk(xk, r̃k). Therefore this implies expression (10)
holds for any (u, r′) ∈ Fk(xk, rk).

The following Lemma provides a sensitivity condition for
the value function Vk(xk, rk).

Lemma III.5. Suppose Fk(xk, rk) and Fk(xk, r̃k) are non-
empty sets for k ∈ {0, . . . , N−1}. Then, for xk ∈ S, rk, r̃k ∈
Φk(xk), such that rk ≥ r̃k, k ∈ {0, . . . , N}, the following
expression holds:

0 ≤ Vk(xk, r̃k)− Vk(xk, rk) ≤MV,k(rk − r̃k) (12)

where MV,k = (Mc+Mq(N−k−1)cmax +MV,k+1)Mr,k >
0, and MV,N = 0.

Proof. First, for k ∈ {0, . . . , N − 1}, when r̃k ≤ rk, by
Lemma IV.1 in [1], we know that Vk(xk, r̃k) ≥ Vk(xk, rk).
The proof is completed if we can show that for r̃k ≤ rk,

Vk(xk, r̃k)− Vk(xk, rk) ≤MV,k(rk − r̃k).

First, at k = N , for any rN , r̃N ∈ ΦN (xN ), we get
VN (xN , r̃N ) = VN (xN , rN ) = 0. Inequality (12) trivially
holds for any MV,N > 0. By induction’s assumption, sup-
pose there exists MV,j+1 > 0 such that following inequality
holds at k = j + 1:

|Vj+1(x, r̃j+1)− Vj+1(x, rj+1)| ≤MV,j+1 |r̃j+1 − rj+1| .

for any x ∈ S. Then, for the case at k = j, by Theorem
IV.2 in [1], the infimum of Tj [Vj+1] is attained. From
Theorem II.4, Vj(xj , rj) = Tj [Vj+1](xj , rj). For any given
xj ∈ S, rj ∈ Φj(xj), let (u∗j , r

∗,′) be the minimizer of
Tj [Vj+1](xj , rj). Then, there exists (ûj , r̂

′) ∈ Fj(xj , r̃j),

such that inequality (10) and the following expressions hold:

Vj(xj , r̃j)− Vj(xj , rj)
≤c(xj , ûj)− c(xj , u∗j ) +

∑
x′∈S

Q(x′|xj , ûj)Vj+1(x′, r̂′(x′))

−
∑
x′∈S

Q(x′|xj , u∗j )Vj+1(x′, r∗,′(x′))

=c(xj , ûj)− c(xj , u∗j )

+
∑
x′∈S

Q(x′|xj , ûj) (Vj+1(x′, r̂′(x′))− Vj+1(x′, r∗,′(x′)))

+
∑
x′∈S

(
Q(x′|xj , ûj)−Q(x′|xj , u∗j )

)
Vj+1(x′, r∗,′(x′))

≤‖Vj+1‖∞
∑
x′∈S

∣∣Q(x′|xj , ûj)−Q(x′|xj , u∗j )
∣∣

+
∑
x′∈S

{
|Vj+1(x′, r∗,′(x′))− Vj+1(x′, r̂′(x′))|

}
+ |c(xj , ûj)− c(xj , u∗j )|.

The first inequality follows from the definitions. The second
inequality follows from

∑
x′∈S Q(x′|xj , ûj) = 1 and the

definition of ‖Vj+1‖∞ and cmax. From Assumption (1) and
Inductions’ assumption, the above expression further implies

Vj(xj , r̃j)− Vj(xj , rj)
≤(Mc +Mq‖Vj+1‖∞)|ûj − u∗j |

+MV,j+1

∑
x′∈S
|r̂′(x′)− r∗,′(x′)|

≤(Mc +Mq‖Vj+1‖∞ +MV,j+1)Mr,j |r̃j − rj |. (13)

The last inequality is simply resulted from by Lemma III.4.
In addition, from Lemma III.3, we get

‖Vj+1‖∞ =

N−1∑
i=j+1

‖Vi‖∞ − ‖Vi+1‖∞ ≤ (N − j − 1)cmax.

Then, by applying this inequality to the expression derived
in the previous part of the proof, we get

Vj(xj , r̃j)− Vj(xj , rj) (14)
≤ (Mc +Mq(N − j − 1)cmax +MV,j+1)Mr,j |r̃j − rj |.

Thus by induction, expression (12) holds.

The next Lemma shows that the difference between
dynamic programming operators T̄D∆,k[Vk+1](xk, rk) and
Tk[Vk+1](xk, rk) is bounded.

Lemma III.6. For any xk ∈ S, rk ∈ Φk(xk), the following
inequality holds for k ∈ {0, . . . , N − 1}:

0 ≤ T̄D∆,k[Vk+1](xk, rk)− Tk[Vk+1](xk, rk) ≤MV,k+1∆

where MV,k+1 > 0 is given by Lemma III.5 and ∆ is the
step size of the discretization of risk threshold rk.

Proof. First, by the definition of FDk (xk, rk), we know
that FDk (xk, rk) ⊆ Fk(xk, rk). Since, the objective func-
tions and all other constraints in T̄D∆,k[Vk+1](xk, rk) and
Tk[V0,k+1](xk, rk) are identical, we can easily conclude that



T̄D∆,k[Vk+1](xk, rk) ≥ Tk[Vk+1](xk, rk) for all xk ∈ S,
rk ∈ Φk(xk). The proof is completed if we can show

T̄D∆,k[Vk+1](xk, rk)− Tk[Vk+1](xk, rk) ≤MV,k+1∆.

By Theorem IV.2 in [1] we know that the infimum of
Tk[Vk+1](xk, rk) is attained. Let (u∗k, r

∗,′) ∈ Fk(xk, rk) be
the minimizer of Tk[Vk+1](xk, rk). Also, for every fixed x′ ∈
S, let τ(x′) ∈ {0, . . . , t} such that r∗,′(x′) ∈ Φ

(τ(x′))
k+1 (x′).

Now, construct

r̃′(x′) := r
(τ(x′))
k+1 ∈ Φ

(τ(x′))
k+1 (x′).

By definition of Φk+1(x′), we know that r̃′(x′) ∈ Φk+1(x′),
∀x′ ∈ S. Since r(τ(x′))

k+1 is the lower bound of Φ
(τ(x′))
k+1 (x′),

we have r(τ(x′))
k+1 ≤ r∗,′(x′). Furthermore, since the size of

Φ
(τ(x′))
k+1 (x′) is ∆, we know that |r(τ(x′))

k+1 − r∗,′(x′)| ≤ ∆ for
any x′ ∈ S. By monotonicity of coherent risk measures,

d(xk, u
∗
k) + ρk(r̃′(xk+1)) ≤ d(xk, u

∗
k) + ρk(r∗,′(xk+1)) ≤ rk.

Therefore, we conclude that (u∗k, r̃
′) ∈ FDk (xk, rk) is a

feasible solution to the problem in T̄D∆,k[Vk+1](xk, rk). From
this fact, we get the following inequalities:

T̄D∆,k[Vk+1](xk, rk)− Tk[Vk+1](xk, rk)

≤
∑
x′∈S

Q(x′|xk, u∗k)

(
Vk+1(x′, r̃′(x′))− Vk+1(x′, r∗,′(x′))

)
≤ sup
x′∈S

{
|Vk+1(x′, r̃′(x′))− Vk+1(x′, r∗,′(x′))|

}
≤MV,k+1 sup

x′∈S
|r̃′(x′)− r∗,′(x′))| ≤MV,k+1∆.

The first inequality is due to substitutions of the feasible
solution of T̄D∆,k[Vk+1](xk, rk) and the optimal solution of
Tk[Vk+1](xk, rk). The second inequality is trivial. The third
inequality is a result of Lemma III.5 and the fourth inequality
is due to the definition of r̃′(x′), for all x′ ∈ S. This
completes the proof.

The following Lemma is the main result of this section. It
characterizes the error bound between the dynamic program-
ming operator Tk[Vk+1](xk, rk) and TD∆,k[Vk+1](xk, rk).

Lemma III.7. Suppose Assumptions (1) to (2) hold. Then,
there exists a constant MV,k > 0 such that

‖TD∆,k[Vk+1]− Tk[Vk+1]‖∞ ≤ (MV,k +MV,k+1)∆ (15)

where TD∆,k[Vk+1](x, r) is defined in equation (7), ∆ is the
step size of the discretization of risk threshold rk and the
expression of MV,k,MV,k+1 > 0 is given in Lemma III.5,
for k ∈ {0, . . . , N − 1}.

Proof. For any given xk ∈ S and rk ∈ Φk(xk), let τ ∈
{0, . . . , t} such that rk ∈ Φ

(τ)
k (xk). Then, by the definition

of TD∆,k[Vk+1](xk, rk) and Theorem II.4, the following ex-
pression holds:

|TD∆,k[Vk+1](xk, rk)− Tk[Vk+1](xk, rk)| ≤ |Vk(xk, r
(τ)
k )−

Vk(xk, rk)|+ |T̄D∆,k[Vk+1](xk, r
(τ)
k )− Tk[Vk+1](xk, r

(τ)
k )|.

Also, by using Lemma III.5 and III.6, the above expression
implies that∣∣TD∆,k[Vk+1](xk, rk)− Tk[Vk+1](xk, rk)

∣∣
≤MV,k+1∆ +MV,k|rk − r(τ)

k | ≤ (MV,k +MV,k+1)∆.

The last inequality follows from the fact that rk ∈ Φ
(τ)
k (xk)

implies |r(τ)
k − rk| ≤ ∆, where r(τ)

k is the lower bound of
the discretized region of risk threshold: Φ

(τ)
k (xk). By taking

supremum of xk ∈ S and rk ∈ Φk(xk) on both sides of
the resultant inequality, we conclude the inequality given in
expression (15).

Next, define Mr = maxk∈{0,...,N−1}Mr,k. The following
Theorem provides an error bound between the value func-
tion: Vk(xk, rk) and the value function with discretizations:
V Dk (xk, rk).

Theorem III.8. Define V Dk (xk, rk) := TD∆,k[V Dk+1](xk, rk),
k ∈ {0, . . . , N−1} as the value function with discretized risk
threshold/update where V DN (xN , rN ) := VN (xN , rN ) = 0.
Suppose Assumptions (1) to (2) hold. Then,

‖V Dk − Vk‖∞ ≤ 2∆

(
(MrMqcmax −Mc(1−Mr))(1−MN

r )

(1−Mr)3

+
N(N − 1)MrMqcmax

2(1−Mr)
+
N(Mc(1−Mr)−MqMrcmax)

(1−Mr)2

)
where ∆ is the step size of the of risk threshold discretization.

Proof. From Theorem III.7, we know that for j ∈
{k, . . . , N − 1}, ‖TD∆,j [Vj+1] − Tj [Vj+1]‖∞ ≤ (MV,j +
MV,j+1)∆, where ∆ is the step size of the discretization
of risk threshold rj . Therefore, we have the following
expressions:

‖V Dj − Vj‖∞ = ‖TD∆,j [V Dj+1]− Tj [Vj+1]‖∞
≤‖TD∆,j [V Dj+1]− TD∆,j [Vj+1]‖∞ + ‖TD∆,j [Vj+1]− Tj [Vj+1]‖∞
≤‖V Dj+1 − Vj+1‖∞ + (MV,j +MV,j+1)∆.

The first equality is due to Theorem II.4 and the fact that
V Dj (xj , rj) = TD∆,j [V

D
j+1](xj , rj). The third inequality is

based on the non-expansivity property in Lemma III.1 and
the arguments in Theorem III.7. Furthermore,

‖V Dk − Vk‖∞ =

N−1∑
j=k

(
‖V Dj − Vj‖∞ − ‖V Dj+1 − Vj+1‖∞

)

≤

N−1∑
j=k

MV,j +MV,j+1

∆ ≤ 2

N−1∑
j=0

MV,j

∆.

Therefore, the proof is completed by summing the right side
of the inequality from 0 to N−1 and combining all previous
arguments.

As the step size ∆→ 0, for any xk ∈ S and rk ∈ Φk(xk),
this Theorem implies that V Dk (xk, rk)→ Vk(xk, rk).

Remark III.9. Unfortunately, similar to all multi-grid dis-
cretization approaches discussed in [11], [13], [10], the
multi-grid discretization algorithm in this paper also suffers
from the curse of dimensionality. Suppose the number of
discretized grid used is |R|. For each time horizon, the size



of state space is |S||R|. However, the size of the action space
is |A|(|R|)|S|. Methods such as Branch and bound or rollout
algorithms can be applied to find the minimizers in each step
to alleviate this issue, if the upper/lower bounds of the value
functions are effectively calculated.

IV. NUMERICAL IMPLEMENTATION

Consider an example with 3 states (x ∈ {1, 2, 3}), 2
available actions (u ∈ {1, 2}) with time horizon N = 3.
The costs, constraint costs and transition probabilities are
given as follows:[
c(1, 1) c(1, 2)
c(2, 1) c(2, 2)
c(3, 1) c(3, 2)

]
=

[
1 3
2 4
5 6

]
,

[
d(1, 1) d(1, 2)
d(2, 1) d(2, 2)
d(3, 1) d(3, 2)

]
=

1

10

[
5 4
6 3
5 1

]
,

Q(x′|x, 1) =

[
0.2 0.5 0.3
0.4 0.3 0.3
0.3 0.3 0.4

]
, Q(x′|x, 2) =

[
0.3 0.5 0.2
0.2 0.3 0.5
0.3 0.4 0.3

]
.

For any x0 ∈ S and r0 ∈ Φ0(x0), the risk sensitive con-
strained stochastic optimal control problem we are solving
is as follows:

min
π∈Π

E
[∑2

k=0 c(xk, uk)
]

subject to ρ0,3

(
d(x0, u0), d(x1, u1), d(x2, u2), 0

)
≤ r0.

where uk = πk(h0,k) for k ∈ {0, 1, 2},
ρ0,N (Z0, Z1, Z2, Z3) = Z0 +ρ0(Z1 +ρ1(Z2 +ρ2(Z3))) and

ρk(V ) = E [V ] + 0.2
(
E
[
[V − E [V ]]2+

])1/2

.

First, this problem can be re-casted using multi-stage con-
strained dynamic programming using the methods described
by Theorem IV.3 in [1]. Furthermore, based on equations
(7) to (8), we can approximate the optimal value function
using risk threshold/update discretization. In this example,
we discretize every risk threshold sets into M regions, where

M ∈ {5, 10, 20, 40, 60, 80, 100, 150}.

With different sizes of risk threshold discretization, we get
approximations of optimal value functions, up to various
degrees of accuracies. Figure 1 shows both the approxima-
tions of value function using various step sizes and their
errors of approximations. As the number of M increases,
the approximated value function converges towards the true
optimal value function. However, as discussed in Remark
III.9, the size of action space increases exponentially with the
number of states, thus it makes enumerating all state/action
pairs during value iteration computationally expensive.

V. CONCLUSION

In this paper we have presented and analyzed an uniform
grid discretization algorithm for approximating the Bellman’s
recursion for finite horizon constrained stochastic optimal
control problems. Although the current algorithm suffers
from curse of dimensionality, it is by far the only known al-
gorithm for numerically approximating constrained dynamic
programming algorithms with continuous risk updates. This
paper also leaves important extensions open for further re-
searches that involve randomized grid sampling and variable
resolution of discretization.
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Fig. 1. Convergence of approximated value functions, and errors of
approximations.
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