
Rapid Multirobot Deployment with Time Constraints

Stefano Carpin Marco Pavone Brian M. Sadler

Abstract— In this paper we consider the problem of mul-
tirobot deployment under temporal deadlines. The objective
is to compute strategies trading off safety for speed in order
to maximize the probability of reaching a given set of target
locations within a given temporal deadline. We formulate this
problem using the theory of Constrained Markov Decision
Processes and we show that thanks to this framework it
is possible to determine deploying strategies maximizing the
probability of success while satisfying a temporal deadline.
Moreover, the formulation allows to exactly compute the failure
probability of complex deployment tasks. Simulation results
illustrate how the proposed method works in different scenarios
and show how informed decisions can be made regarding the
size of the robot team.

I. INTRODUCTION

In this paper we consider the problem of multirobot
deployment under temporal deadlines. Our focus is one large
teams (swarms) of small, inexpensive robots with limited
capabilities [5], [21]. In this case robots can be considered
expendable assets and one can opt for more risky control
strategies accepting the possibility that some robots may
break down during the task. In fact, there has been in-
creased interest in developing techniques for aggressive robot
maneuvering [13], [18]. From this standpoint, a tradeoff
between speed and risk is evident, because when robots move
very fast in their environment the possibility of collisions
and irremediable damage increases. In these situations it is
therefore necessary to strike a balance between velocity and
risk. The deployment problem we consider is defined as
follows. A set of K robots is placed at a given location and a
set of N target locations is provided. The team objective is to
deploy so that eventually each location is reached by at least
one robot. Once a robot reaches a target location it stops. A
temporal constraint is given, i.e., each robot shall terminate
its operation within the given deadline. Problems like this
find application in situations where robots are sent into a
region to acquire time-sensitive information before human
operators enter the scene. Examples include urban search and
rescue, surveillance, and the like. In a situation like this each
robot faces a time/safety tradeoff. Robots have an incentive to
move as fast as possible to reach one of the locations before
the given deadline. At the same time, chances of success
decrease when moving at high speed because a robot moving
at high velocity is more likely to incur in an event precluding
its success (e.g., the robot bumps into an obstacle and breaks

S. Carpin is with the School of Engineering, University of California-
Merced, CA, USA.

M. Pavone is with the Department of Aeronautics and Astronautics,
Stanford University, CA, USA.

B.M. Sadler is with the Army Research Lab, Adelphi, MD, USA.

down, or fails to properly localize itself and gets lost, etc.)
In the deployment situation, the redundancy in the robot
team is essential to mitigate this problem. In other words,
by increasing the number K of robots one can operate at
higher velocities and tolerate that some robots will fail to
navigate to their assigned location, as long as the team as
a whole succeeds. Relevant problems in this scenario are
then 1) deciding how many robots should be in the team to
guarantee success with a certain level of confidence given
a certain temporal deadline; 2) assigning target locations
to robots; 3) for each robot computing a strategy to reach
the assigned location before the deadline and maximizing
the chances of success. Our eventual long term objective
is to characterize the space relating deployment policies,
temporal deadlines, success probability, the complexity of the
environment, and the size of the team. In our recent work [7]
we have defined this problem and we have proposed two very
simple algorithms whose performance can be characterized
only in approximate terms. A first step towards validating
linking our theoretical model with real world hardware is
presented in [22]. In this paper we extend our preliminary
findings by using the theory of constrained Markov decision
processes (CMDPs). By using formulating our problem using
CMDPs, we obtain the two new results:

• we compute provably optimal strategies that satisfy in
expectation a temporal deadline;

• we compute the exact failure probability for the optimal
strategy.

Our theoretical findings are corroborated by various simu-
lations. Results derived from this formulation is operationally
relevant because they can inform decision makers about the
relationship between team size, probability of success and
the temporal deadline.

Although we embrace a different solving approach, we
retain two of the hypotheses we formerly made. The first
is that we aim at minimalistic algorithms that can be run
on large teams of simple robots. These robots are supposed
to predominantly operate on their own, without exchanging
large amount of information with other team members or
knowing how large the team is. The rationale behind this
choice is that large teams of simple robots are easier to
deploy (no complex setup), more resilient and more cost
effective. In this paper we assume that robots do not ex-
change any information before or during the mission. The
second assumption is that the robots know the map of the
environment and can self localize themselves. Both elements
can be achievable in certain conditions. For example, indoor
maps are becoming ubiquitous (e.g., Google indoor maps)

and outdoor terrain maps can be obtained through aerial
recognition. Localization in outdoor domains is also achiev-
able (e.g., GPS), and our recent paper [22] discusses the
impact of localization errors in indoor environments. There-
fore in this manuscript we keep the simplifying assumption
that robot location is known and we focus on the problem of
balancing risk and performance. Finally, we stress that we
are targeting small platforms, whose individual performances
can be assumed to be mutually independent. This way, even
if one or more robots fail on their way to a target, they do
not obstruct the way to other robots.

The rest of the paper is organized as follows. Section II
offers brief pointers to related literature, mostly outlining dif-
ferences between our problem and previous work. The theory
of constrained Markov decision processes is introduced in
section III, and in Section IV we show how to formulate a
deployment problem using the theory of constrained Markov
decision processes. Simulations are presented and discussed
in Section V, while conclusions and future work are offered
in Section VI.

II. RELATED WORK

The deployment task we consider is related to various mul-
tirobot problems in the area of surveillance and information
gathering. However, to the best of our knowledge the specific
problem we study is new.

Deployment is related to coverage control [9], [24], an
area that has received enormous attention in recent years (see
[6] for a comprehensive literature review.) These methods
are mostly based on local optimization and aim at control
strategies steering the system towards an asymptotic equi-
librium point optimizing a given performance function. On
the contrary, in this paper we focus on the constraints on the
transient stage of the solution. Approaches based on random
dispersion were proposed too [19], [20], but these methods
do not offer performance bounds, neither for probability
of success nor deployment time. Temporal constraints were
considered in [7], [10], [15], though in a different setting.
Approaches relying communication, often modeled using
POMDPs have also been proposed [3], [12], [17], but in this
paper we assume agents do not exchange any information.
Markov decision processes have been extensively used in
robotics and any list is necessarily incomplete. However,
the use of Constrained Markov Decision Processes [2] in
robotics is much more limited, in particular when it comes
to deployment-like problems [11].

To the best of our knowledge, the deployment problem
under temporal constraints we study in this paper was first
introduced in our former papers [7], [22] and the use of Con-
strained Markov Decision Processes to compute deployment
strategies under temporal constraints is new.

III. TOTAL COST CONSTRAINED MARKOV DECISION
PROCESSES

In this section we introduce the notation used in the
remaining of this paper. We provide a brief summary about
total cost Markov Decision processes and we then outline key

differences with Constrained Markov Decision Processes.
The reader is referred to [4] for a thorough discussion.

A. Total Cost Markov Decision Processes

A discrete Markov Decision Process (MDP) is a model
used to study decision making problems where actions out-
comes are stochastic and the state is observable. A stationary
MDP is defined by a quadruple X, A, c,P where:

• X is a finite set of n = |X| states. The evolution over
time of the state of an MDP is stochastic and the state
at time t is given by the random variable Xt.

• A is a collection of n finite sets. A(x) is the set of
actions that can be applied when the MDP is in state
x. It is convenient to define the set K = {(x, a) : x ∈
X, a ∈ A(x)}. In general, the action taken at time t is
a random variable indicated by the letter At.

• c : K → R is the function defining the immediate cost
incurred when applying action a ∈ A(x) while in state
x ∈ X.

• Paxy is the one step transition probability from state x to
state y when action a is applied, i.e., Paxy = Pr[Xt+1 =
y|Xt = x,At = a].

Based on the above definitions, the sequence of states and
actions over time are defined by a stochastic process that
we will indicate as (Xt, At). The above model is stationary
because costs and transition probabilities do not depend
on time. Solving an MDP means determining a policy π
defining which action should be applied at time t given
that Xt = x in order to minimize a given cost function. In
general π(x) needs not to be a function into A(x) but could
in general be a mass distribution over A(x). Different cost
functions have been defined in MDP related literature: finite
horizon; infinite horizon with discounted cost; average-cost
with infinite horizon; and total cost. For our application the
most appropriate model is the total cost. For this model to be
valid, one needs to make the following further assumptions:

1) X is partitioned into sets X′ and M, i.e., X = X′∪M
and X′ ∩M = ∅.

2) For each x ∈M, c(x, a) = 0
3) The MDP is transient, i.e., y ∈M, x ∈ X′ ⇒ Paxy =

0, and for every policy π and every state x ∈ X′,∑∞
t=1 Prπ[Xt = x] < ∞ where Prπ[Xt = x] is the

probability that the MDP is in state x at time t while
following policy π.

The third requirement imposes a special structure on the
underlying MDP that ensures that the following cost exists
and is finite:

c(π) = Eπ

[
+∞∑
t=1

c(Xt, At)

]
where Eπ indicates the expectation with respect to the
probability mass over the sequence (Xt, At) induced by π.
Indeed, the transient property ensures that eventually the state
will enter and remain in M where no more cost is accrued.
Therefore c(π) is finite even though it is an infinite sum of

undiscounted costs. Let Π be the set of all policies for a
given MDP. We define

π∗ = arg min
π∈Π

c(π).

It is well known that given a stationary MDP there exists
an optimal, stationary, deterministic Markovian policy π∗.
Therefore the optimal policy is a function π∗ : X → A.
Optimal policies can be computed in different ways, and
dynamic programming methods (value iteration or policy
iteration) are the techniques most commonly used.

B. Total Cost Constrained Markov Decision Processes

A total cost Constrained Markov Decision Process
(CMDP) extends the MDP model by introducing additional
costs and associated constraints. A CMDP is defined by
X, A, c,P, di, D where X, A, c,P are defined as above and
define a transient MDP. Furthermore:
• di : K → R, with 1 ≤ i ≤ L is a family of L additional

costs incurred when applying action a from state x. In
order to set the stage for a sound definition of total
costs, we furthermore assume that for each x ∈ M,
d(x, a) = 0.

• D ∈ RL is a vector of L upper bound values for the
expected cumulative di costs.

Before defining the total cost for CMDP it is necessary to
recall that for CMDPs the optimal policy in general depends
on the probabilistic distribution of the initial state. In the
following this distribution is indicated with the letter β, with
the understanding that β(x) = Pr[X1 = x] for x ∈ X. For
a CMDP we define the total costs:

c(π, β) = Eπ,β

[
+∞∑
t=1

c(Xt, At)

]

di(π, β) = Eπ,β

[
+∞∑
t=1

di(Xt, At)

]
1 ≤ i ≤ L.

Solving a CMDP means determining an optimal policy π∗

minimizing the expected total cost c(π, β) while ensuring
that each of the additional L total costs defined by the
functions di is (in expectation) bounded by Di, i.e.,

π∗ = min
π
c(π, β) (1)

s.t. di(π, β) ≤ Di, 1 ≤ i ≤ L.

CMDPs do not share many of the properties enjoyed by
MDPs (see [2] for a comprehensive discussion of the sub-
ject.) For example, even for the simplest stationary case the
optimal policy for a CMDP may require randomization and
be non deterministic. In addition, CMDPs cannot be solved
using dynamic programming but are rather solved using
linear programming1.

1To be precise there exist more than one LP formulation that can be
used, and methods based on Lagrange multipliers have been introduced
too. However, they will not be considered in this paper.

A fundamental theorem concerning CMDPs [1] relates
the solution of the optimization problem defined in Eq. 1
to the constrained linear optimization problem defined as
follows. First, let K′ = {(x, a), x ∈ X′, a ∈ A(x)}. Next,
let us introduce |K′| optimization variables ρ(x, a), each one
associated with an element in K′. Let δx(y) = 1 when x = y
and 0 otherwise. Then, consider the following constrained
linear optimization problem:

min
∑

(x,a)∈K′
ρ(x, a)c(x, a) (2)

s.t.
∑

(x,a)∈K′
ρ(x, a)di(x, a) ≤ Di 1 ≤ i ≤ L

∑
y∈X′

∑
a∈A(y)

ρ(y, a)(δx(y)− Paxy) = β(x) ∀x ∈ X′

ρ(x, a) ≥ 0.

The constrained optimization problem defined in Eq. 1 has a
solution if and only if the problem defined in Eq. 2 is feasible
[1], and the optimal solution to the linear program induces an
optimal stationary, randomized policy for the CMDP defined
as follows:

π∗(x, a) =
ρ(x, a)∑

a∈A(x) ρ(x, a)
x ∈ X′, a ∈ A(x) (3)

where π∗(x, a) is the probability of taking action a when
in state x. If the denominator of Eq. 3 is 0, then the policy
can be arbitrarily defined for (x, a). Note that the policy is
not defined for states in M because it is assumed that the
evolution terminates when the state enters M.

The optimization variables ρ(x, a) can be interpreted as
occupancy measures, where the occupancy measure of a
couple (x, a) is defined as

ρ(x, a) =
∑
t

P [Xt = x,At = a] (4)

where the probability is implicitly conditioned on a policy π
and an initial distribution β. Note that the occupancy measure
is a sum of probabilities, but in general is not a probability
itself. However, in the next section we prove that, because
of the way we define our model, one of the ρ(x, a) variables
provides the exact probability that a robot fails to accomplish
its task.

IV. DEPLOYMENT USING CMDS

In this section we formalize the deployment problem using
a graph model and we show how given a deployment instance
it is possible to build an associated CMDP. As we did in
[7], we model the environment using an undirected graph
G = (X,E) where X is the set of vertices and E is the set
of edges. Graph abstractions are common for this kind of
problems, and we have in the past shown how it is possible
to automatically extract graphs from occupancy grid maps
and associate to the graph elements quantities related to the
underlying metric maps, like traversal costs and so on [16].

One vertex d ∈ X represents the deployment site where
robots start from, whereas the set of target locations is
T ⊂ X . An edge e ∈ E between two vertices v1 and v2

means it is possible to go form v1 to v2 and viceversa. To
each edge ei ∈ E we associate a function Si : R+ → [0, 1].
Si(t) is the probability of successfully completing a move
along edge ei as a function of the time spent during the
move. Si then captures the tradeoff between speed and
risk and is subject to the boundary constraints Si(0) = 0
and limt→+∞ Si(t) = 1. Moreover, Si is a non decreasing
function.

We associate an instance of the deployment problem to a
CMDP as follows. The set of states is X = X ∪ {S} where
S is a sink state introduced to model failures. Robots enter
the sink state when they fail to perform a transition between
two vertices and cease to operate. We partition the state set
X into M = T and X′ = X \M. With this partition, and
using the transition probabilities defined in the following, the
CMDP will be transient in X′. The initial distribution β is
defined as β(d) = 1 and β(x) = 0 for x 6= d. For each
state x 6= S and x /∈ T we create A(x) as follows. For
each edge (x, y) we consider a discrete set of times based
on the distance l(x, y) between x and y. The discretization
step ∆ is fixed and equal for all edges. A(x) is then defined
as follows2:

A(x) = {(y, t) : (x, y) ∈ E, 1 ≤ t ≤ dl(x, y)/∆e, t ∈ N}.

An action (y, t) ∈ A(x) means that the robot tries to navigate
from x to y spending at most time t. For the state S we define
just one action aS = (xT , 0) where xT is an arbitrary state
in the target set T . We do not need to define actions for
states in T because, as evidenced in the formulation of the
optimization problem given in Eq. 2, these states and actions
do not influence the solution. Finally, for each x, y ∈ X ,
a ∈ A(x), we need to define the transition probabilities Paxy .
These probabilities are defined as follows:

Paxy =

S(x,y)(t) if x, y 6= S, a = (y, t) ∈ A(x)

1− S(x,z)(t) if x 6= S, y = S, a = (z, t) ∈ A(x)

1 if x = S, y = xT ∈ T, a = aS

0 otherwise

The first case of this equation models the probability of
successfully completing in time t a move from x to y based
on the S function associated with the edge. The second case
instead models the failure probability, i.e., when a robot does
not successfully make the transition from x to z it enters the
sink state S. The third case implies that once the system
enters the sink state it deterministically3 moves to one of the

2One could in fact put also a lower bound on t in the definition of A(x).
This makes sense from a practical point of view, but does not change the
properties of the model, because actions with a too small t value will be
associated with a 0 transition probability.

3Since aS = (xT , 0) is the only action defined for S, it follows that once
the state enters in S it will immediately move to xT spending 0 additional
time.

target states with probability 1. This deterministic transition
into T makes the CMDP transient in X′. Figure 1 shows the
role of the sink state S.

T1
d

S

T2

Fig. 1: Given a graph G = (X,E) and a policy π, multiple
stochastic paths from the deployment vertex d to the target
vertices (T1 and T2 in the figure) may emerge. Each of
them is associated with a failure probability defined as the
probability that one of the transitions does not succeed.
Whenever this happens the MDP enters S (dashed arrows)
and then it deterministically moves into one state in T . As it
will be illustrated in the following, the CMDP formulation
we propose allows to exactly compute the probability that
any path induced by the optimal policy π∗ passes through
S.

To complete the definition of the CMDP we need to
define the immediate costs c(x, a), the additional costs
di(x, a) and the vector D. For all states x different from S
we set c(x, a) = 0 for every action. For the sink state we set
c(S, aS) = 1. In this paper we consider just one additional
cost, namely the time needed to complete an action. The
cost is then d(x, a) = t for x ∈ X′, a = (y, t) ∈ A(x), and
0 otherwise. With just one additional cost, we then need to
provide just one bound so the vector D reduces to a single
constant.

The following theorem establishes that for the special
CMDP we just formulated the failure probability can be
exactly computed.

Theorem 1: Consider a CMDP with the structure de-
scribed in this section, let ρ(x, a) the solution of the as-
sociated optimization problem given in Eq. 2, and let π∗ the
optimal policy derived from ρ(x, a) using Eq. 3. Then, the
probability of failure is equal to ρ(S, aS) and

ρ(S, aS) = c(π∗, β).
Proof. By definition (see Eq. 4),

ρ(S, aS) =

+∞∑
t=1

P [Xt = S, At = aS]

where P is the probability induced by the policy and the
initial distribution. Let Ω be sample space for the state
evolution, and consider the family of events Bt = {Xt = S}

with t = 1, 2, Clearly, for how we defined the transition
probability, if one of the Bt is true then the deployment
fails, and if the deployment fails one and only one of the Bt
is true, because once the state enters S it deterministically
moves to T at the next step and it stays there. Let us
furthermore define the event B = Ω \

⋃
tBt. By definition,

B and
⋃
tBt are mutually exclusive, and also Bi and Bj

are mutually exclusive for every i 6= j. Using the total
probability theorem, the probability of the event failure (F
in the following) is then:

Pr[F] =

+∞∑
t=1

Pr[F|Bt] Pr[Bt] + Pr[F|B] Pr[B]

Because of our definitions, Pr[F|Bt] = 1 and Pr[F|B] = 0,
so the expression simplifies to

Pr[F] =

+∞∑
t=1

Pr[Bt] =

+∞∑
t=1

Pr[Xt = S, At = aS]

where we used the definition of Bt and the fact that only
action aS can be taken in S. This proves the first part of the
theorem. To prove the second statement, recall the definition
of c(π∗, β)

c(π∗, β) = Eπ∗,β

[
+∞∑
t=1

c(Xt, At)

]

=

+∞∑
t=1

∑
(x,a)∈K′

c(x, a) Pr[Xt = x,At = a].

We defined c(x, a) = 0 for each x 6= S and c(S, aS) = 1.
Therefore the expression simplifies to

c(π∗, β) =

+∞∑
t=1

Pr[Xt = S, At = aS] = ρ(S, aS)

and this proves the second statement.�
The theorem then shows that thanks to the way we defined

the costs c(x, a), by minimizing c(π, β) we minimize the
failure probability.

Remark: once the optimal policy is computed, it is im-
portant to consider that the temporal deadline D is met
in expectation considering all executions, including those
leading to a failure. The time of completion of a failing
deployment is smaller because when a failure occurs the
state enters S and then deterministically moves into T
without accruing additional time (in other words, the state
evolution takes a shortcut towards T via S). Hence, if one
just looks at the expected time to completion conditioned to
a successful deployment this value may be higher than D
and this mismatch grows as the failure probability grows.
This is evident considering the following expression:

E[Tdep] = E[Tdep|Succ] Pr[Succ] + E[Tdep|Fail] Pr[Fail]

where Tdep is the deployment time and for what we just said
E[Tdep|Fail] is smaller than E[Tdep|Succ]. On the other
hand, from a practical point of view one will select the size
of the team so that the Pr[Fail] is small, and in such case

E[Tdep|Succ] Pr[Succ] will converge towards E[Tdep] and
then satisfy the given deadline D.

A. The deployment algorithm

Based on the CMDP formulation, we can implement
the following deployment algorithm that generalizes and
improves the one we formerly proposed. The main tenet
of this strategy is that no coordination is needed between
agents, i.e., they do not communicate among each other,
nor they know how many robots are in the team (i.e.,
they do not know the value of K.) This strategy not only
serves as yardstick for comparison with more sophisticated
coordination mechanisms to be developed in the future, but
is also robust and easy to setup because team members can
just be added without the need for any re-configuration or
replanning. The pseudocode is sketched in Algorithm 1. Each
robot picks a random target vertex in T (line 1), builds the
associated CMDP (line 2) computes the optimal strategy π∗

(line 3) and then navigates to v according to the strategy
(line 4).

1 choose random vertex v ∈ T ;
2 build CMDP instance CMDP with M = {v};
3 π∗ ← SolveCMDP(CMDP);
4 navigate to v according to policy π∗;
Algorithm 1: Deployment algorithm implemented by
each agent.

For sake of simplicity, in line 1 the target vertex v ∈ T
is chosen using a uniformly random distribution. Better
approaches are possible, e.g., sending more robots to the
more challenging locations, but we omit them for lack
of space. Our approach is however independent from the
process used to select v.

For a given instance of the deployment problem, we can
then compute the failure probability for each of the N nodes
in T , where the failure of a node is defined as the probability
that a robot following the optimal policy will fail to reach
the node. In [7] we derived a detailed analysis relating the
probability of success given K, and a temporal deadline
(see the referenced paper for details.) The analysis assumed
knowledge of the failure probability we just described, but
our former algorithm did not provide it, so we had to revert to
an approximation. Thanks to the CMDP formulation, instead,
we can now provide a sharper, exact bound.

V. SIMULATION RESULTS

In this section we test the proposed algorithm in two
environments4. We on purpose use the same maps we used
in [7] (see Figure 2). Note however that a direct comparison
between the CMDP formulation and the one we proposed
in [7] is not possible because the two solutions are subject
to different temporal constraints. CMDPs produce policies
that obey a constraint on the expected time to complete

4Matlab code implementing the simulations described in this section is
available for download at robotics.ucmerced.edu.

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18 1

(a) Simple map

32

33
2

4
6

26
24

22

21
19 16

13

52

43

11

42

1

(b) Sdr40 map

Fig. 2: The two maps used to experimentally evaluate the deployment policies computed with a CMDP are the same we
used in [7]. The deployment vertex is marked with a pink triangle, whereas goal vertices are indicated by green crosses.
Edges between vertices indicate that a path exists. The left map is drawn by hand, whereas the right one is derived from
the publicly available Radish dataset).

the deployment, whereas the algorithm we proposed in [7]
obeys to a strict temporal deadline (without expectation).

In each of the map the graph is overlaid onto the blue print
of the environment. Target vertices are marked with a number
and the deployment vertex is indicated with a pink triangle
(vertex number 1). Each edge is characterized with a different
S function. Figure 3 shows the prototypical sigmoid function
associated with each edge and providing the probability of
success as a function of the time spent traversing the edge.
Sigmoidal functions are commonly used when modeling risk
[23]. Note however, that our findings are parametric with
respect to S, as long as it satisfies the condition we gave in
Section IV.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

t

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

S function

T
1

T
2

Fig. 3: General shape of the S function associated with every
edge in the graph.

Parameters T1 and T2 are a function of the edge and in

general different for each edge. In particular T1 is function
of the euclidean distance between the two vertices and T2

is a function of the clearance on the path between the
vertices (low clearance implies a higher value for T2 because
navigation is more challenging, so the robot needs to slow
down to safely navigate).

Figure 4 and Figure 5 show the results of simulation
deployment for policies obtained with the CMDP algorithm
for different temporal deadlines. Based on these charts, one
can then decide how many robots should allocated to the
team in order to match a given probability of success while
satisfying a constraint on the expected deployment time.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

K

S
u
c
c
e
s
s
 r

a
te

Simple map

33
50
67
84
101
118
135
152
169
186

Fig. 4: Success rate as a function of the number of robots for
different temporal deadlines for the simple map displayed in
figure 2a.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

K

S
u
c
c
e
s
s
 r

a
te

SDR40

20

51

82

113

144

175

206

237

268

Fig. 5: Success rate as a function of the number of robots
for different temporal deadlines for the sdr40 map displayed
in figure 2b.

Finally in figure 6 we show the trends of the average
time to completion for one specific case (sdrmap, temporal
deadline D = 113), and we plot both the average for all runs
(blue line) and the average restricted to the successful runs
only (red line).

20 40 60 80 100 120 140

20

40

60

80

100

120

Temporal Deadline 113

K

T
im

e
 t
o
 C

o
m

p
le

ti
o
n

All runs
Successful runs

Fig. 6: Average time to completion of the task as a function
of the swarm size for the sdr40 map and a temporal deadline
of 113.

Experimental data confirm the explanation regarding the
expected execution time we gave in the remark at the end of
section IV. In expectation, the deployment always terminates
within the given deadline (jitter in the figure is due to
averaging a limited number of trials). For low values of
K the failure probability is higher and if one looks at the
expected time to completion restricted to the successful runs
(red line), the expectation is higher than the deadline, and
the constraint is met only when considering all runs (i.e.,
including successful and unsuccessful ones – blue line). As
the number of agents deployed grows, the fraction of robots

successfully completing the deployment grows too, and then
the two expectations eventually converge. To put this chart
into perspective, one should relate this chart to the trend of
the line for D = 113 given in Figure 5. Given that from an
operational point of view one wants to operate in a regime
where the success probability is high, it follows that under
these conditions our model produces deployment strategies
minimizing risk and meeting the temporal deadline.

Given that the problem we study is novel, a compari-
son with alternative methods is not immediate. One could
compare with the method we presented in [7]. While for
simple problems the solution could be comparable in terms
of performance, the method in [7] does not provide an exact
error bound, so it is less informative when it comes to decide
how many agents to should be included in the team.

Alternatively, one could use algorithms searching for
shortest paths on graphs, but they consider just one metric,
whereas our method allows, in a principled way, to minimize
one cost (failure probability) while keeping a bound on
another cost (completion time).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the problem of rapid deploy-
ment of multiple robots under temporal constraints using the
theory of CMDPs. CMDPs offer a rich framework for further
work and generalizations. First, there exist numerous results
for CMDPs where the action state A(x) is a compact set
rather than a finite set. This extension allows to remove the
discretization on the actions set. Constraints can also be in-
troduced to model other limited resources, like for example to
allow for communications between robots but imposing costs
to keep them to a minimum or to rely on communication
only when it is highly likely to succeed (for example when
robots are close to each other). Communication would enable
replanning, for example to reroute robots to a different target
location when they learn it has already been reached by other
robots.

The optimal policy π∗ depends on β, and β in turn does
not need to be concentrated on a single state d but may
be a general mass distribution over X. In certain situations
there may be the possibility to choose where to deploy the
robots before the deployment starts. By studying the relations
between the failure probability of π∗ and β it may be possible
to pick the deployment vertex, or a probability distribution
over a set of deployment vertices, giving the lowest failure
probability. Moreover, paralleling CMDPSs, there exist a
theory of Constrained Partially Observable Markov Decision
Processese [8], [14] that we intend to study to account for
uncertainties in the localization process or in sensing in
general.

REFERENCES

[1] E. Altman. Constrained Markov decision processes with total cost
criteria: Occupation measures and primal LP. Mathematical methods
of operations research, 43:45–72, 1996.

[2] E. Altman. Constrained Markov Decision Processes. Stochastic
modeling. Chapman & Hall/CRC, 1999.

[3] M. Batalin and G. Sukhatme. The Design and Analysis of an Efficient
Local Algorithm for Coverage and Exploration Based on Sensor
Network Deployment. IEEE Transactions on Robotics, 23(4):661–
675, Aug 2007.

[4] D. P. Bertsekas. Dynamic Programming & Optimal Control, volume
1 and 2. Athena Scientific, 2005.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: from
Natural to Artificial Systems, volume 4. Oxford University Press New
York, 1999.

[6] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks. Princeton, 2009.

[7] S. Carpin, T.H. Chung, and B. Sadler. Theoretical foundations of
high-speed robot team deployment. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 2025–
2032, 2013.

[8] R.C. Chen, K. Wagner, and G.L. Blankenship. Constrained partially
observable Markov decision processes with probabilistic criteria for
adaptive sequential detection. IEEE Transactions on Automatic Con-
trol, 58(2):487–493, 2013.

[9] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing netorks. IEEE Transactions on Robotics and
Automation, 20(2):243–255, 2004.

[10] X. Ding, M. Kloetzer, Y. Chen, and C. Belta. Automatic Deployment
of Robotic Teams. IEEE Robotics & Automation Magazine, 18(3):75–
86, 2011.

[11] X. Ding, A. Pinto, and A. Surana. Strategic Planning under Un-
certainties via Constrained Markov Decision Processes. In IEEE
International Conference on Robotics and Automation, pages 4568–
4575. IEEE, 2013.

[12] J. Fink, A. Ribeiro, and V. Kumar. Robust Control of Mobility and
Communications in Autonomous Robot Teams. IEEE Access, 1:290–
309, 2013.

[13] H. Huang, G.M. Hoffmann, S.L. Waslander, and C.J. Tomlin. Aerody-
namics and control of autonomous quadrotor helicopters in aggressive
maneuvering. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3277–3282, 2009.

[14] D. Kim, J. Lee, K.-E. Kim, and P. Poupart. Point-based value iteration
for constrained POMDP. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 1968–1974, 2011.

[15] M. Kloetzer and C. Belta. Temporal Logic Planning and Control of
Robotic Swarms by Hierarchical Abstractions. IEEE Transactions on
Robotics, 23(2):320–330, 2007.

[16] A. Kolling and S. Carpin. Extracting surveillance graphs from robot
maps. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2323–2328, 2008.

[17] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. Coordinated multi-
robot exploration under communication constraints using decentralized
Markov decidion processes. In Proceedings of the twenty-sixth AAAI
conference on artificial intelligence, pages 2017–2023, 2012.

[18] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. In Proceed-
ings of the International Symposium on Experimental Robotics, Dec
2010.

[19] R. Morlok and M. Gini. Dispersing robots in an unknown environment.
In 7th International Symposium on Distributed Autonomous Robotic
Systems (DARS), 2004.

[20] J.L. Pearce, P.E. Rybski, S.S. Stoeter, and N.P. Papanilolopoulos.
Dispersion behaviors for a team of multiple miniature robots. In Pro-
ceedings IEEE International Conference on Robotics and Automation,
pages 1158–1163, 2003.

[21] A. Purohit and P. Zhang. Controlled-mobile Sensing Simulator for
Indoor Fire Monitoring. In Wireless Communications and Mobile
Computing Conference, pages 1124–1129, 2011.

[22] A. Purohit, P. Zhang, B. Sadler, and S. Carpin. Deployment of swarms
of micro-aerial vehicles: from theory to practice. In Proceedings of
the IEEE International Conference on Robotics and Automation, 2014
(accepted for publication).

[23] M. Rausand and A. Høyland. System Reliability Theory: Models,
Statistical Methods, and Applications, volume 396. John Wiley &
Sons, 2004.

[24] M. Schwager, J. McLurkin, and D. Rus. Distributed Coverage Control
with Sensory Feedback for Networked Robots. In Proceedings of
Robotics: Science and Systems, 2006.

