Principles of Robot Autonomy I

Section Logistics
Sections

• Modeled after sections in CS 106A/B/X/L
• Provide hands-on experience for commonly-used tools in robotics
 • AKA tools you’ll be using for your homework and final projects
• Taking feedback from previous years to heart
Section Logistics

• First 15-30 minutes will be a presentation about the aims of the section, references, and a description of the hands-on activity you’ll be doing

• Rest of the time (1.5+ hours) will be for you and a partner (your tablemate) to complete the hands-on activity

• You submit your results on Gradescope when you’re done
Do I have to stay the whole time?

• Once you complete the activity and submit your results, you can leave
Do I have to arrive on time?

• Yes

• ... unless you have an overlapping class conflict. In that case, you should still arrive ASAP and make a group with someone else that is arriving similarly late
 • If you’re the only one that arrives late, then you can join an existing group

• Section slides and the activity handout will be posted online, so you can still catch up

• However, we will not stay after hours
Questions about Section Logistics?
Principles of Robot Autonomy I

Section 1: Introduction to Python 2.7, Git, and Debugging
Aims

• Learn how to use Git for version control
• Start working with Python 2.7 and some of its most common packages
• Tips and tricks for debugging
OS Setup

• Only need a local Python 2.7 installation for the first two homeworks
 • Later, we’ll be providing a server for running ROS remotely and rendering the visualization on your laptop

• You have the following options:
 1. Install Python and run your scripts locally on Windows/MacOS/Linux
 2. Set up a dual boot with Ubuntu 16.04
 3. Set up a virtual machine with Ubuntu 16.04
 4. Log into Stanford FarmShare
Git

• Popular source code version control system
• You probably already use it!
 • Github, BitBucket, etc. all support Git
• Replaces the days of
 • Important_doc.docx
 • Important_doc_v2.docx
 • Important_doc_final.docx
 • Important_doc_final2.docx
 • Important_doc_final2_USE_THIS_ONE.docx
Git

• Strongly recommend getting used to using Git on your homework
 • If you have a Github account, you can fork the homework repo and clone that out
Python 2.7

• We assume you already have some programming experience at the level of CS 106A

• As a result, rather than providing a full-blown tutorial about Python, we’ll direct you to last year’s Python + NumPy tutorial (hands-on!)

• It can be found online at: http://asl.stanford.edu/aa274_win1819/pdfs/recitation/Tut3_NumPy.pdf
Debugging

- pdb

```python
#!/usr/bin/env python

# This script will introduce us to the basics of using Python

# Imports
import pdb
import math

# Variables
initial_integer = 1
initial_float = 1.0

pdb.set_trace()

cast_int_to_float = float(initial_integer)
cast_float_to_string = str(initial_float)

# Printing
print("Hello world!")
name = "Your Name"
print("Hello my name is {}".format(name))

# Functions
print("\nFunctions:")
y = lambda x: math.sin(x)

def sin(x):
    # code
```
Debugging

• More generally the debugging process is:
 • Google it
 • Ask a peer in the class
 • Google it
 • If all else fails, then post on Piazza or at office hours
Section 1

• Focuses on Python and common use-cases for it in this course
• We’ll ask you to perform a few basic mathematical operations and plot the results