
Principles of Robot Autonomy I
Advanced methods for trajectory optimization



Motion control
• Given a nonholonomic system, how to control its motion from an 

initial configuration to a final, desired configuration

• Aim
• Revisit trajectory planning as optimal control problem
• Learn key ideas underpinning indirect methods for optimal control 
• Establish link between direct and indirect methods

• Readings
• D. K. Kirk. Optimal Control Theory: An introduction. 2004.
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Optimal control problem
The problem:

where 𝒙 𝑡 ∈ 𝑅%, 𝒖 𝑡 ∈ 𝑅(, and 𝒙 𝑡, = 𝒙,

• In trajectory optimization, we typically consider the case
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Open-loop control

• We want to find

• In general, two broad classes of methods:

1. Indirect methods: attempt to find a minimum point “indirectly,” by 
solving the necessary conditions of optimality ⇒ “First optimize, then 
discretize”

2. Direct methods: transcribe infinite problem into finite dimensional, 
nonlinear programming (NLP) problem, and solve NLP  ⇒ “First discretize, 
then optimize”
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Preliminaries: constrained optimization

• Form Lagrangian function 𝐿: 𝑅%1( → 𝑅

• If 𝒙∗a is a local minimum which is regular, the NOC conditions are

• First order condition represents a system of n + m equations with n + 
m unknowns
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Indirect methods: NOC
Assume no state/control constraints
• Form Hamiltonian
• Hamiltonian equations

• Boundary conditions:                      , and
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Indirect methods: NOC
Assume control inequality constraints: e.g., |𝑢6| ≤ 8𝑢6 for all i
• Form Hamiltonian
• Hamiltonian equations

• Boundary conditions:                      , and
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Pontryagin’s minimum principle



Substitutions for boundary conditions
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Indirect methods: practical aspects

Reference for NOC: D. K. Kirk. Optimal Control Theory: An 
introduction. Dover Publications, 2004.
In practice: To obtain solution to the necessary conditions for 
optimality, one needs to solve two-point boundary value problems
• For example, in Python: 

https://pythonhosted.org/scikits.bvp_solver/
• Allows to solve problem of the form

• Syntax: solve(bvp_problem, solution_guess)
• In Matlab: bvp4c
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Example
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Extensions
• What about problems whose necessary conditions do not fit directly the 

“standard” form (e.g., free end time problems)?
• Handy tricks exist to convert problems into standard form: Ascher, U., & 

Russell, R. D. (1981). Reformulation of boundary value problems into 
“standard” form. SIAM review, 23(2), 238-254.

Important case: free final time (Problem 4 in pset)
1. Rescale time so that 𝜏 = 𝑡/𝑡;, then 𝜏 ∈ [0,1]

2. Change derivatives @
@A
≔ 𝑡;

@
@C

3. Introduce dummy state r that corresponds to 𝑡; with dynamics �̇� = 0
4. Replace all instances of 𝑡; with r
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Example

• Dynamics:

• Cost: 

• Analytical solution gives:
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Example (solution)
• Define state as 𝒛 = [𝒙, 𝒑, 𝑟]
• BC are:

• BVP becomes

• BC become
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Direct methods - nonlinear programming transcription
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min J
CK

CL
𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

�̇�(𝑡) = 𝐚 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [𝑡,, 𝑡;]

𝐱 0 = 𝐱,,  𝐱 𝑡; ∈ 𝑀;

(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ(,   𝑡 ∈ [𝑡,, 𝑡;]

Forward Euler time discretization

1. Select a discretization 0 = 𝑡, < 𝑡Y < ⋯ < 𝑡[ = 𝑡; for the 
interval [𝑡,, 𝑡;] and, for every 𝑖 = 0, … , 𝑁 − 1, define
𝐱6~𝐱 𝑡 , 𝐮6 ~ 𝐮 𝑡 , 𝑡 ∈ (𝑡6, 𝑡61Y] and 𝐱,~𝐱 0

2. By denoting ℎ6 = 𝑡61Y − 𝑡6, (OCP) is transcribed into the 
following nonlinear, constrained optimization problem

min(𝐱b,𝐮𝐢) d
6e,

[fY

ℎ6𝑔(𝐱6, 𝐮6, 𝑡6)

𝐱61Y = 𝐱6 + ℎ6𝐚 𝐱6, 𝐮6, 𝑡6 , 𝑖 = 0,… , 𝑁 − 1(NLOP)

𝐮6 ∈ 𝑈 , 𝑖 = 0,… , 𝑁 − 1 , 𝐹 𝐱[ = 0



Direct methods - nonlinear programming transcription
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Forward Euler time discretizationConsistency of Time Discretization

Is this approximation consistent with the 
original formulation?

Yes!
Indeed, the KKT conditions for (NLOP) converge 
to the necessary optimality conditions for (OCP), 

that are given by the Pontryagin’s Minimum 
Principle, when ℎ6 ⟶ 0

1. Select a discretization 0 = 𝑡, < 𝑡Y < ⋯ < 𝑡[ = 𝑡; for the 
interval [𝑡,, 𝑡;] and, for every 𝑖 = 0, … , 𝑁 − 1, define
𝐱6~𝐱 𝑡 , 𝐮6 ~ 𝐮 𝑡 , 𝑡 ∈ (𝑡6, 𝑡61Y] and 𝐱,~𝐱 0

2. By denoting ℎ6 = 𝑡61Y − 𝑡6, (OCP) is transcribed into the 
following nonlinear, constrained optimization problem

min(𝐱b,𝐮𝐢) d
6e,

[fY

ℎ6𝑔(𝐱6, 𝐮6, 𝑡6)

𝐱61Y = 𝐱6 + ℎ6𝐚 𝐱6, 𝐮6, 𝑡6 , 𝑖 = 0,… , 𝑁 − 1(NLOP)

𝐮6 ∈ 𝑈 , 𝑖 = 0,… , 𝑁 − 1 , 𝐹 𝐱[ = 0



Consistency of time discretization
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Pontryagin’s Minimum Principle (PMP)

Recall that the necessary optimality conditions for (OCP) are 
given by the following expressions

Simplified Formulation

min J
,

CL
𝑔 𝐱 𝑡 , 𝐮 𝑡 𝑑𝑡

�̇�(𝑡) = 𝐚 𝐱 𝑡 , 𝐮 𝑡 ,  𝑡 ∈ [0, 𝑡;]

𝐱 0 = 𝐱,

(OCP)

• Co-state equation:

�̇� 𝑡 = −
𝜕𝐚
𝜕𝐱 𝐱 𝑡 , 𝐮 𝑡 l𝐩 𝑡 −

𝜕𝑔
𝜕𝐱 (𝐱 𝑡 , 𝐮 𝑡 )

• Control equation:
𝜕𝐚
𝜕𝐮 𝐱 𝑡 , 𝐮 𝑡 l𝐩 𝑡 +

𝜕𝑔
𝜕𝐮 𝐱 𝑡 , 𝐮 𝑡 = 𝟎



Consistency of time discretization
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Related non-linear program (NLOP)

After discretization in time:

Simplified Formulation

min(𝐱b,𝐮b) d
6e,

[fY

ℎ6𝑔(𝐱6, 𝐮6)

𝐱6 + ℎ6𝐚 𝐱6, 𝐮6 − 𝐱61Y = 𝟎, 𝑖 = 0,… , 𝑁 − 1

min J
,

CL
𝑔 𝐱 𝑡 , 𝐮 𝑡 𝑑𝑡

�̇�(𝑡) = 𝐚 𝐱 𝑡 , 𝐮 𝑡 ,  𝑡 ∈ [0, 𝑡;]

𝐱 0 = 𝐱,

(OCP)

(NLOP)



Consistency of time discretization
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Related non-linear program (NLOP)

After discretization in time:

KKT Related to (NLOP) 

min(𝐱b,𝐮b) d
6e,

[fY

ℎ6𝑔(𝐱6, 𝐮6)

𝐱6 + ℎ6𝐚 𝐱6, 𝐮6 − 𝐱61Y = 𝟎, 𝑖 = 0,… , 𝑁 − 1

(NLOP)

Denote the Lagrangian related to (NLOP) as

Then, the KKT conditions related to (NLOP) read as:

ℒ = d
6e,

[fY

ℎ6𝑔 𝐱6, 𝐮6 + d
6e,

[fY

𝛌6l 𝐱6 + ℎ6𝐚 𝐱6, 𝐮6 − 𝐱61Y

• Derivative w.r.t. 𝐱6 :

ℎ6
𝜕𝑔
𝜕𝐱6

𝐱6, 𝐮6 + 𝛌6 − 𝛌6fY + ℎ6
𝜕𝐚
𝜕𝐱6

𝐱6, 𝐮6 l𝛌6 = 𝟎

• Derivative w.r.t. 𝐮6 :

ℎ6
𝜕𝑔
𝜕𝐮6

𝐱6, 𝐮6 + ℎ6
𝜕𝐚
𝜕𝐮6

𝐱6, 𝐮6 l𝛌6 = 𝟎



Consistency of time discretization
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Consistency with the PMPKKT Related to (NLOP) 

Denote the Lagrangian related to (NLOP) as

Then, the KKT conditions related to (NLOP) read as:

ℒ = d
6e,

[fY

ℎ6𝑔 𝐱6, 𝐮6 + d
6e,

[fY

𝛌6l 𝐱6 + ℎ6𝐚 𝐱6, 𝐮6 − 𝐱61Y

• Derivative w.r.t. 𝐱6 :

ℎ6
𝜕𝑔
𝜕𝐱6

𝐱6, 𝐮6 + 𝛌6 − 𝛌6fY + ℎ6
𝜕𝐚
𝜕𝐱6

𝐱6, 𝐮6 l𝛌6 = 𝟎

• Derivative w.r.t. 𝐮6 :

ℎ6
𝜕𝑔
𝜕𝐮6

𝐱6, 𝐮6 + ℎ6
𝜕𝐚
𝜕𝐮6

𝐱6, 𝐮6 l𝛌6 = 𝟎

We finally obtain:

𝛌6 − 𝛌6fY
ℎ6

= −
𝜕𝐚
𝜕𝐱6

𝐱6, 𝐮6 l𝛌6 −
𝜕𝑔
𝜕𝐱6

𝐱6, 𝐮6
𝜕𝐚
𝜕𝐮6

𝐱6, 𝐮6 l𝛌6 +
𝜕𝑔
𝜕𝐮6

𝐱6, 𝐮6 = 𝟎

Let 𝐩 𝑡 = 𝛌6 for 𝑡 ∈ [𝑡6, 𝑡61Y] , 𝑖 = 0, … , 𝑁 − 1 and 
𝐩 0 = 𝛌,. Then, the equations above are the discretized 
version of the necessary conditions for (OCP):

�̇� 𝑡 = −
𝜕𝐚
𝜕𝐱 𝐱 𝑡 , 𝐮 𝑡 l𝐩 𝑡 −

𝜕𝑔
𝜕𝐱 (𝐱 𝑡 , 𝐮 𝑡 )

𝜕𝐚
𝜕𝐮 𝐱 𝑡 , 𝐮 𝑡 l𝐩 𝑡 +

𝜕𝑔
𝜕𝐮 𝐱 𝑡 , 𝐮 𝑡 = 𝟎



Direct methods – software packages
Some software packages:
• DIDO: http://www.elissarglobal.com/academic/products/ 

• PROPT:  http://tomopt.com/tomlab/products/propt/
• GPOPS:  http://www.gpops2.com/ 

• CasADi:  https://github.com/casadi/casadi/wiki
• ACADO: http://acado.github.io/

For an in-depth study of direct and indirect methods, see AA203  
“Optimal and Learning-based Control” (Spring 2020)
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http://www.elissarglobal.com/academic/products/
http://tomopt.com/tomlab/products/propt/
http://www.gpops2.com/
https://github.com/casadi/casadi/wiki
http://acado.github.io/


Next time: graph search methods for motion planning 
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