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LQR-style algorithms for optimal control

Linear tracking problems

Nonlinear tracking problems

Using LQR techniques to solve nonlinear optimal control problems
e |terative LQR
* Differential dynamic programming

Readings: notes Section 3.1, 3.2 and references therein
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Recapping LQR

* Minimize
1 1 N—-1
Jo(x0) = ixjj\}QNXN +3 > (xkQrxy + uf Ryuy + 2x] Hyuy)
k=0

s.t. Xk41 = Apxy + Bruy, k € {0, 1,....,N — 1}

 Solved efficiently using dynamic programming by computing value function:

. o xk "TQw  Hy [xa
T Ga) = ) ([uk] [H,Z’ Ry | |ug +
(Apxp + Brug)' Pey1(Arxy + Bkukz))

* Result: W;(ch) = Lixy
1

J,: (Xk;) = §XZ:P]€X]€
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-
Recapping LQR

* Can also generalize cost (adding linear/constant terms), and dynamics (adding affine term)

Minimize 1 ixy "TQn  an [xn]
Jo(x0) = D) [ 1 ] [q% 2en] | 1

N—1 T - T
1 X Qr  ak | | Xk T X Hy,
2 k=0 ([ 1 ] [(ﬁ 2e| [ 1 s 2y Ty o

subject to dynamics
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Linear tracking problems

Imagine you are given a nominal trajectory
(EO» ey EN)r (ﬁo; ey l_lN—l)

* Assume nominal trajectory satisfies linear dynamics

Linear tracking problem: find policy to minimize cost
N-1

1 T 1 T T
5 Gy = %) Qulan = B) +5 ) [ — %) QG — %)+ (wy = ) Rty — %))
k=0

Then define deviation variables

OXy = X — X, and Suy == uy, — Uy

and solve standard LQR with respect to deviation variables
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Nonlinear tracking problems

Imagine you are given a feasible nominal trajectory

(EOJ ey fN)r (ﬁOJ ey 1_I'N—l)

The tracking cost is still quadratic, but the dynamics are now nonlinear

Xpi1 = f (X, Uy)

To apply LQR, we can linearize around the nominal trajectory

Sxk 5uk

0 | | 0
B & (@ )+ o () (5 — T) + o (B, ) (ke — i)

Ak Bk

And apply LQR to the deviation variables (with dynamics §x;,1 = Ay dx), + Brduy)
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Nonlinear optimal control problem

* Consider now nonlinear optimal control problem

N—1
muin Z c(Xk, ug)
k=0
subject to xXx4+1 = f(Xg, ur)

* Can we apply LQR-techniques to approximately solve it?
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lterative LQR

* Imagine you are given a feasible nominal trajectory
(EOI ey fN)i (l_lOr ey ﬁN—1)

 Linearize the dynamics around feasible trajectory

Xp+1 ~ f(Xg, Ug) +fx(>_<k, ﬁkzéxk +fu(>_<k, ﬁkZCSUk

N 7

N~

~
Xk+1 Ak By,

* And Taylor expand cost function around feasible trajectory

1 1
c(0xy,0uy) ~ cp + cz,k 0Xp + c}f,k ouy + —5x;‘g Cxx,k 0Xf + —5u£ Cuu,k OUg + 5XZ Cxu,k OUE
N~~~ N~ 2 ~—~— 2 N~ N~
dk ry Qk Ry Hy
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lterative LQR

« By optimizing over deviation variables (using results for LQR with cross-quadratic cost &
affine dynamics), we obtain new solution:

{fk + SxZ} and {ﬁk + 5“;;}

* We can then re-linearize and Taylor expand around this new trajectory, and iterate!
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lterative LQR

» Backward pass (k = N to 0):

« Compute locally linear dynamics, locally quadratic cost around nominal
trajectory

» Solve local approximation of DP recursion to compute control law
* Compute cost-to-go

* Forward pass (k = 0 to N):
* Use optimal control policy to update nominal trajectory

* Propagate full nonlinear dynamics f, not the linearized approximate
dynamics!

* Iterate until convergence
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Algorithmic details

Need to make sure that the new state / control stay close to the linearization point
» Add extra penalty on deviations
* Apply a line search on policy rollout

Need to decide on termination criterion
* Forexample, one can stop when cost improvement is “small”

Method can get stuck in local minima — “good” initialization is often critical

Cost matrices may not be positive definite
* Regularize them until they are

Great collection of tips/tricks: Yuval Tassa’s thesis (Section 2.2.3)
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https://homes.cs.washington.edu/~todorov/papers/TassaThesis.pdf

Differential Dynamic Programming (DDP)

* iLQR first approximates dynamics and

cost, then performs exact DP recursion Optimal Control

Problem

* DDP instead approximates DP _
recursion directly iILQR DDP

ApprOXImate the SVStem Approximate the Value Function

Quadratic approximation of cost

. N - Quadratic approximation of cost-to-go
Linear approximation of dynamics o 9

Perform exact DP recursion on
the approximated system
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Differential Dynamic Programming (DDP)

In detail, consider the change in cost to go at timestep k under a perturbation (dx, duy,)

Qk((SXk, 5uk) = C()_(k + 5Xk, uz + 5uk) -+ Jk—|—1(f()_<k + 5Xk, uz + 5uk))

Using a 2nd order Taylor Expansion,

N T 5Xk 1 5Xk 2 5Xk
Qr (0%, 0up) ~ Qr(0,0) + VQy [5Uk] T35 |our| ¥ 9 5uy
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Differential Dynamic Programming (DDP)

The optimal control perturbation is

du; = argming,, Q(dxg, du)

Expanding the approximation, one gets

Qr (0, dur) ~ Qr(0,0) + Q0% + Q0w +

first order terms

1 1

A

"
second order terms
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Differential Dynamic Programming (DDP)

Apply conditions for optimality (gradient equal to zero):

Qu,k + qu,kémk + Quuk(suk = ()

= 0, = —Quu,Qut — Qpy , Qua kO T

As was the case with LQR, the optimal control has the form

5’11,2 — lk + Lk(Sa:k.

Algorithm proceeds via same forward/backward passes as iLQR
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R EEEEEEEEE—————S——m—m—m———
ILQR vs. DDP

Quadratic approximations for the state-action value function (Q function):

Qr = Cr + Vg1
T

Qx,k — Cx,k + fx,kvk—I—l
T

Qu,k = Cuk T fu kVk+1

Qxx,k — Cxx.,k + f;Z:ka—l—lfx,k + Vg1 - fxx,k
Quu,k — Cuu,k + fakvk—i—lfu,k + Vg1 fuu,k

Qux,k = Cux,k + flfikvk—l—lfx,k + Vit1 - fux.k

DDP contains second-order dynamics derivatives compared to iLQR
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Next time

 Stochastic DP
 Value Iteration, Policy Iteration
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