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Basic problem — discrete-time setting

e System: x;, ., =f(X,uy, k), k=0,..,N—1
 Control constraints: u,€ U(Xy)

e Cost:
N-—1

](XO;uO' ""uN—l) — hN(XN) + z g(xk;uk; k)

k=0

* Focus is now on finding optimal closed-loop policies:
u, = " (Xg, k) (or mp (X))

4/22/24 AA 203 | Lecture 7



Principle of optimality

The key concept behind the dynamic programming approach is the
principle of optimality

Suppose optimal path for a multi-stage decision-making problem is

€

» first decision yields segment a — b with cost J
* remaining decisions yield segments b — e with cost [,

e optimal costisthen %, = J,» + Jpe
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-
Principle of optimality

* Claim:If a — b — e is optimal path from a to e, then b — e is optimal
pathfrombtoe

* Proof: Suppose b — ¢ — e is the optimal path from b to e. Then

]bce < ]be
and

Jab T Joce <Jap T+ Jre = ]Ze

Contradiction!
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Principle of optimality

Principle of optimality: Let {uy, uj, ..., uy_;} be an optimal control
sequence, which together with x;, determines the corresponding state
sequence {Xy, X7, ..., Xy} . Consider the subproblem whereby we are at x;,
at time k and we wish to minimize the cost-to-go from time k to time

N, 1. e,
Yk (X;c: uk) T Z%_:]i(+1 Im (Xm: um)"' hN (XN)

Then the truncated optimal sequence {u;, u; 4, ..., Uy_4 } is optimal for
the subproblem

* Tail of optimal sequences optimal for tail subproblems
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Applying the principle of optimality

Principle of optimality: if b — c is the
initial segment of the optimal path from
b to f,thenc — f is the terminal
segment of this path

Hence, the optimal trajectory is found
by comparing;:

Cbcf = Jpc T ]:f

Coar = Joa + Jar

Cbef = Jpe T ]Zf
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-
Applying the principle of optimality

* need only to compare the concatenations of immediate decisions
and optimal decisions — significant decrease in computation /
possibilities

* in practice: carry out this procedure backward in time
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Example

Optimal cost: 18
Optimalpath:.a - d—> e—> f—> g— h
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DP Algorithm

* MOdel:xk+1 — f(xk; Ug, k); uke U(Xk)

» Cost: J(Xo) = hy(Xy) + XpZo 9 Xp, i (X)), k)

DP Algorithm: For every initial state x, the optimal cost J*(X() is equal to

Jo(Xp), given by the last step of the following algorithm, which proceeds
backward in time from stage N — 1 to stage 0:

In(Xy) = hy(Xy)
Jiex) = min  g&Xu k) + Jeo (f &Kug, k), k=0,..,N—1

up€eU(xg)

Furthermore, if u;, = m;, (x;) minimizes the right-hand side of the above
equation for each x;, and k, the policy {my, 4, ..., Ty_1} is Optimal
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Comments

« discretization (from differential equations to difference equations)

* quantization (from continuous to discrete state variables / controls)
 global minimum

* constraints, in general, simplify the numerical procedure

 optimal control in closed-loop form

* curse of dimensionality

4/22/24 AA 203 | Lecture 3 11



Example: discrete LQR

* In most cases, DP algorithm needs to be performed numerically
A few cases can be solved analytically

Discrete LQR: select control mputs to m|n|m|ze

1 /
](XO)ZEX;VHXN zkuXk + Uy R ug]

subject to the dynamics
Xp+1 = AxXg + Bpug

AssumptionntH =H' > 0, Q=Q'=> O, R=R'"> 0
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Example: discrete LQR

First step:
) 1 1
Jn(XN) = é—foHxN = ixg\,PNxN

Going backward

1, / /
JN-1(XN—-1) :glvml — S Xn_1@QxXN_1 +uy_Runy_1 +xyHXN
1 4
llejiin1 §< Xn_1QxXn_1+uy_{Runy_1+

\

(AN_1XNy_1+ Bny_1un_1) H(AN_1xXn_1 + BNluNl)}
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Example: discrete LQR

Taking derivative

OJN_1(XN-1)
oupn_1

— RllN_l =1 B}V_lH(AN_lxN_l = BN_luN_1> =0

and

82J1§—1(XN—1)

(’)u%\, 1 :R_I'BEV_lHBN—l > ()
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e
DP for discrete LQR

Hence, the optimizer satisfies
(R + Bf\r_lHBN—l)u}kV_l -+ B;V_1HAN_1XN_1 =

SO

u*N_l — —(R + B}\T_lHBN—l)_1B§V_1HAN—1XN—1 = FN_lxN_l
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DP for discrete LQR

Plugging in

1

JN—1(XN-1) :§X§v_1{Q + Fy_{RFN_1+

(AN—1+ BN_1Fn_1)H(An_1 + BN—1FN—1)}XN—1

:=Xn_1 PN—1XN-1
FN—l = — (R -+ B;V_leBN—l)_lBEV_leAN—l
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e
DP for discrete LQR

Proceeding by induction, the solution is given by

1. Jy(xy) = %x}v PyXy,Where Py = H

2. u;, = F,x,,whereF, = — (R+ By}, Pyy1By) 'By Priq Ay
3 J(X) = %x;{ P, x;., where

P. = Q + F;RF, + (Ay + ByFy)' Py+q1 (Ax + BrFy)

At the end,]O (Xo) —_ %XBPOXO

4/22/24 AA 203 | Lecture 7



Next time

* Nonlinear LQR for tracking and trajectory generation
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