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Outline

• Necessary conditions for optimal control with bounded controls:
• Pontryagin’s Minimum Principle (PMP)

• Examples: Applications of PMP (and insights we can derive from the analysis)
• Computational methods

AA 203 | Lecture 54/15/2024 3



Necessary conditions for optimal control 
(with unbounded controls)

• The problem is to find an admissible control u∗ which causes the system
𝐱̇ 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡) 

   to follow an admissible trajectory x∗ that minimizes the functional

𝐽 𝐮 = ℎ 𝐱 𝑡" , 𝑡" + ∫#!
#" 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	𝑑𝑡	

•  Assumptions: ℎ ∈ 𝐶$, state and control regions are unbounded, 𝑡%	and 𝐱(0) are 
fixed
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Necessary conditions for optimal control 
(with unbounded controls)

• Define the Hamiltonian

𝐻 𝐱 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 &𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)
• The necessary conditions for optimality (proof to follow) are
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𝐱̇∗ 𝑡 = '(
'𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐩̇∗ 𝑡 = − '(
'𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = '(
'𝐮 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]
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with boundary conditions
𝜕ℎ
𝜕𝐱

𝐱∗ 𝑡" , 𝑡" − 𝐩∗ 𝑡"
#
𝛿𝐱" + 𝐻 𝐱∗ 𝑡" , 𝐮∗ 𝑡" , 𝐩∗ 𝑡" , 𝑡" +

𝜕ℎ
𝜕𝑡

𝐱∗ 𝑡" , 𝑡" 𝛿𝑡" = 0



Necessary conditions for optimal control 
(with bounded controls)

• So far, we have assumed that the admissible controls and states are not 
constrained by any boundaries
• However, in realistic systems, such constraints do commonly occur

• control constraints often occur due to actuation limits
• state constraints often occur due to safety considerations 

• We will now consider the case with control constraints, which will lead to the 
statement of the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

• By definition, the control 𝐮∗ causes the functional 𝐽 to have a relative minimum 
if

𝐽 𝐮 − 𝐽 𝐮∗ = Δ𝐽 ≥ 0 
   for all admissible controls “close” to 𝐮∗ 
• If we let 𝐮 = 𝐮∗ + 𝛿𝐮, the increment in 𝐽 can be expressed as 

Δ𝐽 𝐮∗, 𝛿𝐮 = 𝛿𝐽 𝐮∗, 𝛿𝐮 + higher order terms 
• The variation 𝛿𝐮 is arbitrary only if the extremal control is strictly within the 

boundary for all time in the interval [𝑡%, 𝑡"] 
• In general, however, an extremal control lies on a boundary during at least one 

subinterval of the interval [𝑡%, 𝑡"] 
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• As a consequence, admissible control variations 𝛿𝐮	exist whose negatives 
(−𝛿𝐮) are not admissible  
• This implies that a necessary condition for 𝐮∗to minimize 𝐽 is 

𝛿𝐽 𝐮∗, 𝛿𝐮 ≥ 0
   for all admissible variations with 𝛿𝐮  small enough
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Why do control constraints complicate the analysis?



Pontryagin’s minimum principle

• Assuming bounded controls 𝐮 ∈ 𝑈, the necessary optimality conditions 
are (𝐻 is the Hamiltonian) 

along with the boundary conditions:

𝜕ℎ
𝜕𝐱 𝐱∗ 𝑡" , 𝑡" − 𝐩∗ 𝑡"

$

𝛿𝐱" + 𝐻 𝐱∗ 𝑡" , 𝐮∗ 𝑡" , 𝐩∗ 𝑡" , 𝑡" +
𝜕ℎ
𝜕𝑡 𝐱∗ 𝑡" , 𝑡" 𝛿𝑡" = 0
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𝐱̇∗ 𝑡 = $%
$𝐩

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐩̇∗ 𝑡 = − $%
$𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 ≤ 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡 , for all 𝐮(𝑡) ∈ 𝑈 

for all
 𝑡 ∈ [𝑡!, 𝑡"]
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Pontryagin’s minimum principle

• 𝐮∗ 𝑡  is a control that causes 𝐻 𝐱∗ 𝑡 , 𝐮 𝑡 , 𝐩∗ 𝑡 , 𝑡  to assume its global 
minimum 
• Harder condition in general to analyze
• Example: consider the system having dynamics:

𝑥̇9 𝑡 = 𝑥$ 𝑡 , 	 𝑥̇$ 𝑡 = −𝑥$ 𝑡 + 𝑢(𝑡);
   it is desired to minimize the functional 

𝐽 = A
#!

#" 1
2
𝑥9$ 𝑡 + 𝑢$ 𝑡 𝑑𝑡

   subject to the control constraint 𝑢 𝑡 ≤ 1	with 𝑡" fixed and the final state free.
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Pontryagin’s minimum principle

Solution:
• If the control is unconstrained, 

𝑢∗ 𝑡 = −𝑝$∗ 𝑡
• If the control is constrained as 𝑢 𝑡 ≤ 1, then

𝑢∗ 𝑡 = F
−1

−𝑝$∗ 𝑡 ,
+1

for	1 < 𝑝$∗ 𝑡
	 −1 ≤ 𝑝$∗ 𝑡 ≤ 1
for	𝑝$∗ 𝑡 < −1

• To determine 𝑢∗ 𝑡  explicitly, the state and co-state equations must still be 
solved
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Additional necessary conditions 

1. If the final time is fixed and the Hamiltonian does not depend explicitly on 
time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 𝑐	 for all 𝑡 ∈ 𝑡%, 𝑡"

2. If the final time is free and the Hamiltonian does not depend explicitly on 
time, then 

𝐻 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 = 0	 for all 𝑡 ∈ [𝑡%, 𝑡"]
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Minimum time problems 

• Find the control input sequence 

𝑀:
; ≤ 𝑢: 𝑡 ≤ 𝑀:

< for 𝑖 = 1,… ,𝑚	
   that drives the control affine system 

𝐱̇ = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
   from an arbitrary state 𝐱% to the origin, and minimizes time

𝐽 = A
#!

#"
1	𝑑𝑡
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Minimum time problems 
• Form the Hamiltonian
        𝐻 = 1 + 𝐩 𝑡 &{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢:(𝑡) to minimize 𝐻, which gives

𝑢:∗ 𝑡 = T𝑀:
<

𝑀:
;
if	 𝐩 𝑡 &𝐛: 𝐱, 𝑡 < 0
if	 𝐩 𝑡 &𝐛: 𝐱, 𝑡 > 0

• Side note: reminiscent of HJB? 𝐩∗ t = ∇𝐱	𝐽 𝐱∗ t , t  under certain technical 
assumptions (see Kirk Ch. 7)
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= 1 + 𝐩 𝑡 &{𝐚 𝐱, 𝑡 + [𝐛9 𝐱, 𝑡 	 𝐛$ 𝐱, 𝑡 ⋯𝐛= 𝐱, 𝑡 ]𝐮 𝑡 }

= 1 + 𝐩 𝑡 &𝐚 𝐱, 𝑡 +[
:>9

=

𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)

“Bang-bang” control
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Minimum time problems 

• Note: we showed what to do when 𝐩 𝑡 &𝐛: 𝐱, 𝑡 ≠ 0
• Not obvious what to do if  𝐩 𝑡 &𝐛: 𝐱, 𝑡 = 0
• If 𝐩 𝑡 &𝐛: 𝐱, 𝑡 = 0 for some finite time interval, then the coefficient of 𝑢:(𝑡) in 

the Hamiltonian is zero, so the PMP provides no information on how to select 
𝑢:(𝑡) 
• The treatment of such a singular condition requires a more sophisticated 

analysis
• The analysis in the linear case is significantly easier, see Kirk Sec. 5.4

4/15/2024 AA 203 | Lecture 5 15



Minimum fuel problems 

• Find the control input sequence 
𝑀:
; ≤ 𝑢: 𝑡 ≤ 𝑀:

< for 𝑖 = 1,… ,𝑚	
   that drives the control affine system 

𝐱̇ = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
  from an arbitrary state 𝐱% to the origin in a fixed time, and minimizes 

𝐽 = A
#!

#"
[
:>9

=

𝑐:	|𝑢:(𝑡)| 𝑑𝑡

4/15/2024 AA 203 | Lecture 5 16



Minimum fuel problems 
• Form the Hamiltonian

        𝐻 = ∑!"#$ 𝑐!	|𝑢!(𝑡)| + 𝐩 𝑡 %{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, select 𝑢:(𝑡) to minimize 𝐻, that is

∑:>9= [𝑐:	|𝑢:∗(𝑡)| + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:∗(𝑡)] ≤ 
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=[
:>9

=

𝑐:	|𝑢:(𝑡)| + 𝐩 𝑡 &𝐚 𝐱, 𝑡 +[
:>9

=

𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)

=[
:>9

=

[𝑐:	|𝑢:(𝑡)| + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)] + 	𝐩 𝑡 &𝐚 𝐱, 𝑡

	 	∑:>9= [𝑐:	|𝑢:(𝑡)| + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)]
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Minimum fuel problems 

• Since the components of 𝐮 𝑡  are independent, then one can just look at 
𝑐:	|𝑢:∗(𝑡)| + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:∗ 𝑡 ≤ 𝑐:	|𝑢:(𝑡)| + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)

• The resulting control law is

𝑢:∗ 𝑡 = _
𝑀:
;

0
𝑀:
<

if	 𝑐: < 𝐩 𝑡 &𝐛: 𝐱, 𝑡
	 if	 − 𝑐: < 𝐩 𝑡 &𝐛: 𝐱, 𝑡 < 𝑐:	

if	𝐩 𝑡 &𝐛: 𝐱, 𝑡 < −𝑐:
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“Bang-off-bang” control
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Minimum energy problems 

• Find the control input sequence 
𝑀:
; ≤ 𝑢: 𝑡 ≤ 𝑀:

< for 𝑖 = 1,… ,𝑚	
   that drives the control affine system 

𝐱̇ = 𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡
  from an arbitrary state 𝐱% to the origin in a fixed time, and minimizes 

𝐽 =
1
2
A
#!

#"
𝐮 𝑡 &𝑅𝐮 𝑡 𝑑𝑡 ,

where 𝑅 > 0 and diagonal
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Minimum energy problems 
• Form the Hamiltonian

        𝐻 = #
&
𝐮 𝑡 %𝑅𝐮(𝑡) + 𝐩 𝑡 %{𝐚 𝐱, 𝑡 + 𝐵 𝐱, 𝑡 𝐮 𝑡 }

• By the PMP, we need to solve

𝐮∗ 𝑡 = arg min
𝐮 # ∈?

[
:>9

=
1
2
𝑅::𝑢: 𝑡 $ + 𝐩 𝑡 &𝐛: 𝐱, 𝑡 𝑢:(𝑡)
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= #
&
𝐮 𝑡 %𝑅𝐮 𝑡 + 𝐩 𝑡 %𝐵 𝐱, 𝑡 𝐮 𝑡 + 𝐩 𝑡 %𝐚 𝐱, 𝑡
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Minimum energy problems 

• As in the first example today, in the unconstrained case, the optimal solution 
for each component of 𝐮(𝑡) would be

e𝑢: 𝑡 = −𝑅::;9 𝐩 𝑡 &𝐛: 𝐱, 𝑡
• Considering the input constraints, the resulting control law is

𝑢∗ 𝑡 = F
𝑀:
;

e𝑢: 𝑡
𝑀:
<

	 if	 e𝑢: 𝑡 < 𝑀:
;

	 if	 𝑀:
; < e𝑢: 𝑡 <

	 if	 𝑀:
< < e𝑢: 𝑡

 𝑀:
<
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“Saturating” control
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Uniqueness and existence
• Note: uniqueness and existence are not in general guaranteed!

• Example 1 (non uniqueness): find a control sequence 𝑢(𝑡) to transfer the system 
𝑥̇ 𝑡 = 𝑢(𝑡)	from an arbitrary initial state 𝑥% to the origin, and such that the 
functional 𝐽 = ∫%

#" 𝑢 𝑡 𝑑𝑡 is minimized. The final time is free, and the admissible 
controls are 𝑢 𝑡 ≤ 1

• Example 2 (non existence): find a control sequence 𝑢(𝑡) to transfer the system 
𝑥̇ 𝑡 = 𝑥 𝑡 + 	𝑢(𝑡)	from an arbitrary initial state 𝑥% to the origin, and such that 
the functional 𝐽 = ∫#!

#" 𝑢 𝑡 𝑑𝑡 is minimized. The final time is free, and the 
admissible controls are 𝑢 𝑡 ≤ 1
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Computational methods

• Until now, we derived necessary conditions for optimality and analytically studied 
a few special cases
• We now focus on numerical techniques to solve two-point boundary value 

problems; popular methods:
• Indirect shooting method
• Indirect collocation method
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Let’s revisit our example…

Find optimal control 𝑢(𝑡) to steer the system 

𝑥̈ 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, 𝑥̇ 0 = 0 to the origin 𝑥 𝑡" = 0, 𝑥̇ 𝑡" = 0, and to minimize 

𝐽 = 9
$𝛼𝑡"

$ + 9
$∫#!

#" 𝑏	𝑢$ 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

• Solution: optimal time is 

𝑡" =
1800𝑏
𝛼

9/A
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Indirect methods: practical aspects

To obtain solution to the necessary conditions for optimality, one needs to solve 
two-point boundary value problems
• In python, we’ll be using scipy.integrate.solve_bvp to solve problems 

in “standard” form
𝑧̇ = 𝑔 𝑧, 𝑡, 𝒑 , 	 𝐵𝐶 𝑧 𝑡% , 𝑧 𝑡" = 0

where 𝒑 are extra variables that can also be optimized
• Syntax: sol = solve_bvp(fun, bc, t, z, p=None)

Example:      𝑧̇9 = 𝑧$, 	 𝑧̇$= − 𝑧9 , 	 𝑧9 0 = 0, 	 𝑧9 4 = −2
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*solve_bvp uses a collocation formula (three-stage Lobatto)



Extensions
• What about problems whose necessary conditions to not fit directly the 

“standard” form (e.g., free end time problems)?
• Handy tricks exist to convert problems into standard form:
• Ascher, U., & Russell, R. D. (1981). Reformulation of boundary value problems 

into “standard” form. SIAM review, 23(2), 238-254.
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Important case: free final time
1. Rescale time so that 𝜏 = 𝑡/𝑡", then 𝜏	 ∈ [0,1]

2. Change derivatives B
BC
	≔ 	 𝑡"

B
B#

3. Introduce dummy state 𝑟 that corresponds to	𝑡" with dynamics 𝑟̇ = 0
4. Replace all instances of	𝑡" with 𝑟 



Example
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Find optimal control 𝑢(𝑡) to steer the system 𝑥̈ 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, 𝑥̇ 0 = 0 to the origin 𝑥 𝑡" = 0, 𝑥̇ 𝑡" = 0, and to minimize 

𝐽 = 9
$𝛼𝑡"

$ + 9
$∫#!

#" 𝑏	𝑢$ 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

Solution
1. Define state as 𝒛 = 𝒙, 𝒑, 𝑟

2. BC are: 𝑥! 0 = 10, 𝑥" 0 = 0, 𝑥! 𝑡# = 0,𝑥" 𝑡# = 0,− $% %&
%

"&
+ 𝛼𝑡# = 0

3. BVP becomes: '𝒛
')
= 𝑡#

'𝒛
'%
= 𝑧*

𝐴 −𝐵[0	1]/𝑏 0
0 −𝐴′ 0
0 0 0

z

4. BC become 𝑧! 0 = 10, 𝑧" 0 = 0, 𝑧! 1 = 0, 𝑧" 1 = 0,− +' ! %

"&
+ 𝛼𝑧*(1) = 0



Next time
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• Direct methods


