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Outline

* Necessary conditions for optimal control with bounded controls:
* Pontryagin’s Minimum Principle (PMP)

« Examples: Applications of PMP (and insights we can derive from the analysis)

 Computational methods
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Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u™ which causes the system

x(t) = f(x(t), u(t), t)

to follow an admissible trajectory x* that minimizes the functional
J@) = h(x(tp), tr) + J;) g (x(0), u(e), 1) de

 Assumptions: h € C?, state and control regions are unbounded, t, and x(0) are
fixed
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Necessary conditions for optimal control
(with unbounded controls)

e Define the Hamiltonian

H(x(t), u(t), p(6), t) = gx(t), u(t),t) + pOTf(x(t), u(t), t)
* The necessary conditions for optimality (proof to follow) are

() = 5 (¢ (O, u'(0,p"(0), 0
() = — 52 (X" (O),w(®),p (D, t) | forallt € [to, 5]

aH k * k
0 = 5 (x*(6), u*(8), p*(8), O
with boundary conditions

%(X*(tf)' tr) = P*(tf)]T 6Xr + [H(x*(tf), u(te), p*(tr) tr) + %(x*(tf), tf)] 5ty =0
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Necessary conditions for optimal control
(with bounded controls)

e So far, we have assumed that the admissible controls and states are not
constrained by any boundaries

* However, in realistic systems, such constraints do commonly occur
» control constraints often occur due to actuation limits
« state constraints often occur due to safety considerations

* We will now consider the case with control constraints, which will lead to the
statement of the Pontryagin’s minimum principle
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Why do control constraints complicate the analysis?

* By definition, the control u* causes the functional J to have a relative minimum
if

J(w) —J(*) =A] =0
for all admissible controls “close” to u*
e [fweletu = u" + du, theincrementin J can be expressed as
AJ(u*, du) = 6/ (u*, du) + higher order terms

* Thevariation du is arbitrary only if the extremal control is strictly within the
boundary for all time in the interval [t, tf]

* In general, however, an extremal control lies on a boundary during at least one
subinterval of the interval [t, t¢]
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Why do control constraints complicate the analysis?

* As a consequence, admissible control variations éu exist whose negatives
(—o6u) are not admissible

* This implies that a necessary condition for u*to minimize J is
6/(u*,éu) =0

for all admissible variations with ||du|| small enough

4/15/2024 AA 203 | Lecture 5 8



-
Pontryagin's minimum principle

* Assuming bounded controls u € U, the necessary optimality conditions
are (H is the Hamiltonian)

x'(6) = 3 (" (0, (0, p° (), 0)

—_

| for all
p(5) = -2 (¢ (0,0 (O, p' (), 0) " el g]

H(x*(t),u*(t),p*(t),t) < HX*(t),u(t),p*(t),t), forallu(t) e U
along with the boundary conditions:

(e )tr) — (6] 0%y + [HO (o) () () ) + (), oty = 0
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Pontryagin's minimum principle

* u*(t) is a control that causes H(x*(t),u(t), p*(t), t) to assume its global
minimum

* Harder condition in general to analyze
* Example: consider the system having dynamics:

x1(t) = x,(t), X5 () = —x,(t) + u(t);
it is desired to minimize the functional
tf 1
J=| ski®+ui(©)]de
to

subject to the control constraint [u(t)| < 1 with t fixed and the final state free.
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-
Pontryagin's minimum principle

Solution:

* If the controlis unconstrained,
u*(t) = —p;(t)
* |f the control is constrained as |[u(t)| < 1, then

( —1 for 1 < p5(t)

w(e) ={-pi), -1<pj®)<1
\ +1 for p5(t) < —1

* Todetermine u*(t) explicitly, the state and co-state equations must still be
solved
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Additional necessary conditions

1. Ifthefinal time is fixed and the Hamiltonian does not depend explicitly on
time, then

H(x*(0),u*(),p*(t)) = ¢ forallt € |¢to, tf]

2. Ifthefinal timeis free and the Hamiltonian does not depend explicitly on
time, then

H(x*(0),u* (), p* (1)) =0 forallt € [t tf]
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Minimum time problems

* Find the control input sequence
M <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x, t)u(t)

from an arbitrary state x to the origin, and minimizes time
Ly
] = 1dt

to
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Minimum time problems

* Form the Hamiltonian
H=1+p®{axt) + B(x,t)u(t)}

=1+ p@®)T{ax t) + [by(x,t) by(x,t) -+ by (%, ) ]u(t)}
= 1+p(OTax ) + ) pO)by(x (1)
=1

* By the PMP, select u;(t) to minimize H, which gives
WD) = M if p(£)Tb;(x,t) <0
S IMTif p(D)Thi(x,t) > 0

“Bang-bang” control
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Minimum time problems

* Note: we showed what to do when p(t)"b;(x,t) # 0
* Not obvious what to do if p(t)"b;(x,t) = 0

« If p(t)"b;(x,t) = 0 for some finite time interval, then the coefficient of u;(t) in
the Hamiltonian is zero, so the PMP provides no information on how to select

u;(t)
* The treatment of such a singular condition requires a more sophisticated
analysis

* The analysis in the linear case is significantly easier, see Kirk Sec. 5.4
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Minimum fuel problems

* Find the control input sequence
M <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x,t)u(t)

from an arbitrary state x,, to the origin in a fixed time, and minimizes

Ly
J = 2 ci [y ()] dt

tol
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Minimum fuel problems

* Form the Hamiltonian
H = Zl ¢ u; D)+ p®)T{ax t) + B(x, t)u(t)}
m

2 ci lus(8)] + POl ) + ) pOTb;(x, Oy (t)
=1

l

|
(=Y

[c; [u; (O] + p(©) b (%, u; ()] + p(H) ax,t)

.

I
[y

l

* By the PMP, select u;(t) to minimize H, that is
iz1lci [ui (O + PO b (x, Du; ()] < XiZale; lui (O] + pO) b (x, ) (1]
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Minimum fuel problems

* Since the components of u(t) are independent, then one can just look at
¢; [ui ()] +p@®) b (x, )i (t) < ¢; |u; ()] + p() ' b;(x, )u;(t)
* Theresulting control law is

(M; if ¢; <p()'b;(x,t)
ui(t) =4 0 if —c; <p®)Th;(xt) <
\Ml+ ifp(t)Tbi(X, t) < —Cj

“Bang-off-bang” control
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Minimum energy problems

* Find the control input sequence
M <u;(t) <M fori=1,..,m

that drives the control affine system
x =a(x,t) + B(x,t)u(t)

from an arbitrary state x to the origin in a fixed time, and minimizes

1
Ji =EL u(t) Ru(t)dt,

0

where R > 0 and diagonal
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Minimum energy problems

* Form the Hamiltonian

H =u®TRu(t) + p()7{ax,t) + B(x, Hu(t)}

= ~u(t)"Ru(t) + p(t)"B(x, Hu(t) + p(t) a(x,t)
* By the PMP, we need to solve

m
1
* — : E —R..1:(+)2 Th. .

=1
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Minimum energy problems

 Asinthe first example today, in the unconstrained case, the optimal solution
for each component of u(t) would be

2;(6) = =R p(O)Tb;(x,t)
* Considering the input constraints, the resulting control law is
(M7 i 4;(0) < Mf
wi(t) ={%@®) if Mp <@ <M
\ M if M <4;(t)

“Saturating” control
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Unigueness and existence

* Note: uniqueness and existence are not in general guaranteed!

« Example 1 (non uniqueness): find a control sequence u(t) to transfer the system
x(t) = u(t) from an arbitrary initial state x, to the origin, and such that the

functional ] = fotflu(t)ldt is minimized. The final time is free, and the admissible
controls are |u(t)| <1

« Example 2 (non existence): find a control sequence u(t) to transfer the system
x(t) = x(t) + u(t) from an arbitrary initial state x, to the origin, and such that

the functional | = ftiflu(t)ldt is minimized. The final time is free, and the
admissible controls are [u(t)| < 1
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Computational methods

* Until now, we derived necessary conditions for optimality and analytically studied
a few special cases

* We now focus on numerical techniques to solve two-point boundary value
problems; popular methods:

* Indirect shooting method
* Indirect collocation method
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Let’s revisit our example...

Find optimal control u(t) to steer the system
X(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢r) = 0, %(t¢) = 0, and to minimize
J = %atf +%ft2fbu2(t)dt, a,b >0

1800b
5= (=)

 Solution: optimal time is
1/5
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Indirect methods: practical aspects

To obtain solution to the necessary conditions for optimality, one needs to solve
two-point boundary value problems

* In python, we’ll be using scipy.integrate.solve bvp to solve problems
in “standard” form

2= g(zt,p) BC (2(t0), 2(t7)) = 0
where p are extra variables that can also be optimized

* Syntax: sol = solve bvp (fun, bc, t, z, p=None)
Example: Z; =2z,, Z,=—|z1|, 2z:(0) =0, z1(4) = -2

*solve bvp uses a collocation formula (three-stage Lobatto)
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Extensions

* What about problems whose necessary conditions to not fit directly the

“standard” form (e.g., free end time problems)?

* Handy tricks exist to convert problems into standard form:

* Ascher, U., & Russell, R. D. (1981). Reformulation of boundary value problems

into “standard” form. SIAM review, 23(2), 238-254.

Important case: free final time

1.

2
3.
4

Rescale time so that T = t/t¢, then T €[0,1]
L d d
Change derivatives — = te —

Introduce dummy state r that corresponds to ty with dynamics 7 = 0

Replace all instances of ty with r
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Example

Find optimal control u(t) to steer the system i (t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢t;) = 0, (t¢) = 0, and to minimize
1 1 ot
J = sati+- [T but(O)dt, ab>0

0

Solution
1. Definestateasz = [x,p, ]
2

2. BCare:x;(0) = 10,x,(0) = 0,x,(¢r) = 0,x,(tf) = 0, RGN atp =0

. . A —-B[01]/b O

Z Z /
3. BVP becomes: il th =Z: |0 —A o]z
0 0 0
Zy

2
4. BCbecomez;(0) =10,2,(0) =0,z,(1) =0,z,(1) =0, — (11?) + az:(1) =0

2
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Next time

* Direct methods
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