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e
CoV extension |: generalized boundary conditions

* Letx : R = R" be a vector-valued function, where each component x; is in
the class of functions with continuous first derivatives. It is desired to find
the function x™ for which the funtctlonal

f
J09 = | g(x(0), (), )
to
has a relative extremum

* Assumptions:
« g€ C?
* to and x(0) are fixed
* tr might be fixed or free, and each component of x(t) might be fixed or free

* Reading:
* D. E. Kirk. Optimal Control Theory: An Introduction, 2004.
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CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

(X" (£),%7(£), £) — g5 (" (0), X" (£), 1) = O
must be satisfied
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CoV extension |: generalized boundary conditions

* Regardless of the boundary conditions, the Euler equations

gx(X*(£), X" (1), ) — = g3 (x(£), X" (), ) = 0
must be satisfied
* The required boundary conditions are found from the equation
gx(x*(t), X" (tf), tf) 6% + [9 (" ), X" () tr) — gu(x" (&), X" (7)), tf)TX*(tf)] oty =0

by making the “appropriate” substitutions for §xr and 6t
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CoV extension |: generalized boundary conditions

* 0Xr and 8ty capture the notion of “allowable” variations at the
end point, thus §t; = 0 if the final time is fixed, and 6x;(t;) = 0 if
the end value of state variable x; (tr) is fixed

» For example, suppose that t; is fixed, x;(t¢),i = 1, ..., 7 are fixed,
and x;(tr),j = r + 1,...,n are free. Then the substitutions are:
le(tf) — O, I = 1, e, I
0x;(tf) arbitrary, j=r+1,..,n

4/9/24 AA 203 | Lecture 4



CoV extension I: generalized boundary conditions

Problem description Substitution Boundary conditions Remarks

1. x(z5), ts both specified oxy = 0x(ty) = 0 | x*(z,) = Xo 2n equations to determine 2n
(Problem 1) oty =0 x*(ty) = Xy constants of integration

2. x(ty) free; t5 specified 0xs = 0x(ty) x*(t) = Xo 2n equations to determine 2
(Problem 2) oty =0 g'f(x*(tf)’ (1)), t5) = 0 constants of integration

3. ty free; x(z5) specified oxs =0 x*(29) = Xo (2n + 1) equations to deter-
(Problem 3) x*(ty) = xr mine 27 constants of integra-

g(x*(ty), X*(ts), t5) tion and ¢

— [BB ), 2, 1] 5% = 0

4. ts, x(t5) free and x*(ty) = Xo (2n + 1) equations to deter-
independent . 08 (o ’ (1), 1) = mine 2n constants of integra-
(Problem 4) gz XU, X0, 1) =0 tion and 7/

g(x*(tr), X*(15), t7) =0

5. ty, X(t5) free but ;- g_o(t ) btst x*(t,) = X (27 + 1) equations to deter-
related by = &7 x*(ts) = 0(25) mine 2n constants of integra-
x(t7) = 6(t5) g(x*(ty), X*(t5), t5) tion and 7
(Ezobiem o) + [GEaxrttp), 209, 19[S ) — 22¢)] = Ot
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Example

* Determine the smooth curve of smallest length connecting the
pointx(0) = 1tothelinet =5
* Solution: x(t) =1
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CoV extension Il: constrained extrema

* Letw : R - R™™ be a vector-valued function, where each component w;
is in the class of functions with continuous first derivatives. It is desired to

find the function w* for which ttge functional
f
Jow) = [ g(w(o), w(o), e

Lo
has a relative extremum, subject to the constraints
fitw@®),w(t),t)=0, i=1,..,n
* Assumptions:
e g €C*?
* to and w(0) are fixed
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CoV extension Il: constrained extrema

» Because of the n differential constraints, only m of
the n + m components of w are independent

 Constraints of this type may represent the state
equation constraints in optimal control problems
where w corresponds to the n + m vector w = [x, u]!

 Similar to the case of constrained optimization,
define the augmented integrand function

g,(W(t),w(t),p(t),t) =

\ Lagrange multipliers (now

functions of time!), the “costate”
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CoV extension Il: constrained extrema

» A necessary condition for optimality is then

2a (w* (), W* (), P*(£), ) — =222 (" (1), W* (1), P (£), £) = 0

along with

flw*(t),w*(t),t) =0

* Thatis, to determine the necessary conditions for an extremal we
simply form the augmented integrand g, and write the Euler
equations as if there were no constraints among the functions w(t)

* Note the similarity with the case of constrained optimization!
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The variational approach to optimal control

Roadmap:

1. We will first derive necessary conditions for optimal control assuming that
the admissible controls are not bounded

2. Next, we will heuristically introduce Pontryagin’s Minimum Principle as a
generalization of the fundamental theorem of CoV

3. Finally, we will consider special cases of problems with bounded controls
and state variables
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Necessary conditions for optimal control
(with unbounded controls)

* The problem is to find an admissible control u* which causes the
system

x(t) = f(x(t),u(t),t)

to follow an admissible trajectory x* that minimizes
the functional

J(w) = h(x(tr),tr) + [ g (x(), u(®), ) dt

 Assumptions: h € C?, state and control regions are unbounded,
to and x(0) are fixed, x isnX1 anduismx1
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Necessary conditions for optimal control
(with unbounded controls)

e Define the Hamiltonian

H(x(t), u(t), p(6), t) = gx(t), u(t),t) + pOTf(x(t), u(t), t)
* The necessary conditions for optimality (proof to follow) are

() = 5 (¢ (O, u'(0,p"(0), 0
() = — 52 (X" (O),w(®),p (D, t) | forallt € [to, 5]

aH k * k
0 = 5 (x*(6), u*(8), p*(8), O
with boundary conditions

%(X*(tf)' tr) = P*(tf)]T 6Xr + [H(x*(tf), u(te), p*(tr) tr) + %(x*(tf), tf)] 5ty =0
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Necessary conditions for optimal control

(with unbounded controls)

Problem Description Substitution Boundary-condition equations Remarks
in Eq. (5.1-18)
tr fixed . X(tr) = x¢ Oxy = 0x(tf) =0 x*(to0) = xo 2n equations to determine 2n
specified oty =0 x*(y) = xs constants of integration
final state
. X(t5) free oxy = 0x(ty) x*to) =Xp 2n equations to determine 2n
oty =0 g_z_ (x*1p) — p*(ts) = 0 constants of integration
. x(t5) on the oxy = 0x(ts) x*(to) = Xp (2n + k) equations to deter-
surface oty =0 ok, . k om; mine the 2n constants of
m(x(¢)) = 0 ax X)) —PHs) = E‘l d"[ﬁ x*(ts ))] integration and the variables
m(x*(tf))=0 dy,...,dg
t5 free . x(t5) = xy oxy =10 x*(to) = Xo (2n + 1) equations to deter-
specified x*(tr) = xr mine the 2» constants of
final stat h 1 ti dz
nal state X(x"‘(tf), u*(tf), p*(tf), tf) + %_t(x*(tf), ff) =0 mtegration and z 5
. X(¢5) free x*(to) = X (2n + 1) equations to deter-
oh, . o mine the 2nr constants of
D t J— L -
X Ukt —pt) =0 integration and 7
oh
HXH(t5), u*(t5), p*(t5)s 15) + 57 (xX*(t5), 17) = O
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Necessary conditions for optimal control
(with unbounded controls)

* Necessary conditions consist of a set of 2n, first-order, differential equations
(state and costate equations), and a set of m algebraic equations (control
equations)

* The solution to the state and costate equations will contain 2n constants of
Integration

 To obtain values for the constants, we use the n equations x(t,) = Xy, and an
additional set of n (orn + 1) equations from the boundary conditions

* Once again: 2-point boundary value problem
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-
Example

Find optimal control u(t) to steer the system
X(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢r) = 0, %(t¢) = 0, and to minimize
1 1t
] = satf +5 ). but(®dt, ab>0

(note: the final time t¢ is free)
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-
Example

Find optimal control u(t) to steer the system
X(t) = u(t)
from x(0) = 10, %(0) = 0 to the origin x(¢r) = 0, %(t¢) = 0, and to minimize
1 1t
] = satf +5 ). but(®dt, ab>0

 Solution: optimal time is
1/5

tr =

(1800b)
a
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Necessary conditions for optimal control
(with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality
conditions are (H = g + p'f is the Hamiltonian)

X'(6) = 55 (" (0,0 (©),p°(0), D

—_

p*() = — 5 (X" (), w(6),p (D), 1) - forallc et t;]

0 =2 (x* (1), u* (), p*(£), £)

along with the boundary conditions:
oh (. ] N N oh,
a—x(x (tr)tr) —p (tf)] 5Xf + [H(x (tr), u*(tr), p*(tr). tr) +E(x (¢r), tf)] Sty =0

-
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e
Proof sketch of NOC

* For simplicity, assume that the terminal penalty is equal to zero, and
that tr and x(ts) are fixed and given

» Consider the augmented cost function
ga(x(6), (1), u(®), p(t), t) = g(x(t),u(t), t) + p(t)" [fx(t), u(t), t) — x(t)]

where the {p;(t)}’s are Lagrange multipliers
* Note that we have simply added zero to the cost function!

* The augmented cost fu?ction is then
f
Ja = [ ga(x(0),%(0,u(0), p0,) at

to

4/9/24 AA 203 | Lecture 4



e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

T
(©.% @O0 @.p' @0 ox©

lga
dp

oi%(u)—f (a“

4/9/24 AA 203 | Lecture 4



e
Proof sketch of NOC

On an extremal, by applying the fundamental theorem of the CoV

By the CoV
theorem

0 of
- a—i x"(©),u" (@), 1) + = (x* (1), u* (1), )" p" () = - % (—p* ()

A A
oi%(u)—f ([ @

\ ( |
T
(©.% @O0 @.p' @0 ox©

lga
dp

|
= f(x"(t),u”(¢),t) —x*(¢)
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e
Proof sketch of NOC

Considering each term in sequence,
o f(x*(t),u*(t),t) —x*(t) = 0, on an extremal

* The Lagrange multipliers are arbitrary, so we can select
them to make the coefficient of §x(t) equal to zero, that is

0 of
p(6) = — 5= (X" (0,0 (D), 8) = 5 (" (O, ' (8), )" (©)

* The remaining variation du(t), is independent, so its
coefficient must be zero; thus

= (' (0, ' (6), 1) + o= (O, (1), )'p*(t) = 0

By using the Hamiltonian formalism, one obtains the claim
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Next time

* Pontryagin’s Minimum Principle
* Special cases
* Computational methods
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