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CoV extension I: generalized boundary conditions

• Let 𝐱 ∶ ℝ → ℝ! be a vector-valued function, where each component 𝑥"  is in 
the class of functions with continuous first derivatives. It is desired to find 
the function 𝐱∗ for which the functional 

𝐽 𝐱 = (
$!

$"
𝑔 𝐱 𝑡 , 𝐱̇ 𝑡 , 𝑡 𝑑𝑡

    has a relative extremum
• Assumptions: 

• 𝑔 ∈ 𝐶#
• 𝑡$	and 𝐱(0) are fixed
• 𝑡%  might be fixed or free, and each component of 𝐱(𝑡%) might be fixed or free

• Reading: 
• D. E. Kirk. Optimal Control Theory: An Introduction, 2004.
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CoV extension I: generalized boundary conditions
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• Regardless of the boundary conditions, the Euler equations

 𝑔𝐱 𝐱∗(𝑡), 𝐱̇∗(𝑡), 𝑡  − #
#$
𝑔𝐱̇ 𝐱∗(𝑡), 𝐱̇∗(𝑡), 𝑡 = 𝟎

    must be satisfied
• The required boundary conditions are found from the equation

𝑔𝐱̇ 𝐱∗ 𝑡$ , 𝐱̇∗ 𝑡$ , 𝑡$
%
𝛿𝐱$ + 𝑔 𝐱∗(𝑡$), 𝐱̇∗(𝑡$), 𝑡$ −	𝑔𝐱̇ 𝐱∗ 𝑡$ , 𝐱̇∗ 𝑡$ , 𝑡$

%
𝐱̇∗(𝑡$)  𝛿𝑡$ = 0

   by making the “appropriate” substitutions for 𝛿𝐱1  and 𝛿𝑡1
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CoV extension I: generalized boundary conditions

• 𝛿𝐱1  and 𝛿𝑡1  capture the notion of “allowable” variations at the 
end point, thus 𝛿𝑡1 = 0 if the final time is fixed, and 𝛿𝑥2 𝑡1 = 0 if 
the end value of state variable 𝑥2(𝑡1) is fixed  

• For example, suppose that 𝑡1  is fixed, 𝑥2 𝑡1 , 𝑖 = 1,… , 𝑟	are fixed, 
and 𝑥3 𝑡1 , 𝑗 = 𝑟 + 1,… , 𝑛	are free. Then the substitutions are:

𝛿𝑡1 = 0
𝛿𝑥2 𝑡1 = 0, 𝑖 = 1,… , 𝑟

𝛿𝑥3(𝑡1) arbitrary, 𝑗 = 𝑟 + 1,… , 𝑛
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CoV extension I: generalized boundary conditions
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Example

• Determine the smooth curve of smallest length connecting the 
point 𝑥 0 = 1 to the line 𝑡 = 5
• Solution: 𝑥 𝑡 = 1
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CoV extension II: constrained extrema

• Let 𝐰 ∶ ℝ → ℝ!%& be a vector-valued function, where each component 𝑤"  
is in the class of functions with continuous first derivatives. It is desired to 
find the function 𝒘∗ for which the functional 

𝐽(𝐰) = (
$!

$"
𝑔 𝐰 𝑡 , 𝐰̇ 𝑡 , 𝑡 𝑑𝑡

    has a relative extremum, subject to the constraints
𝑓" 𝐰 𝑡 , 𝐰̇ 𝑡 , 𝑡 = 0, 𝑖 = 1,… , 𝑛

• Assumptions:
• 𝑔 ∈ 𝐶#
• 𝑡$	and 𝐰(0) are fixed
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CoV extension II: constrained extrema

• Because of the 𝑛	differential constraints, only 𝑚	of 
the 𝑛 +𝑚 components of 𝐰	are independent
• Constraints of this type may represent the state 

equation constraints in optimal control problems 
where 𝐰 corresponds to the 𝑛 +𝑚	vector 𝐰 = 𝐱, 𝐮 𝐓

• Similar to the case of constrained optimization, 
define the augmented integrand function
𝑔5 𝐰 𝑡 , 𝐰̇ 𝑡 , 𝐩 𝑡 , 𝑡 ≔
	 𝑔 𝐰 𝑡 , 𝐰̇ 𝑡 , 𝑡 + 𝐩 𝑡 6𝐟 𝐰 𝑡 , 𝐰̇ 𝑡 , 𝑡
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Lagrange multipliers (now 
functions of time!), the “costate”
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CoV extension II: constrained extrema

• A necessary condition for optimality is then 
!"!
!𝐰

𝐰∗(𝑡), 𝐰̇∗(𝑡), 𝐩∗(𝑡), 𝑡  − %
%&
!"!
!𝐰̇

𝐰∗(𝑡), 𝐰̇∗(𝑡), 𝐩∗(𝑡), 𝑡 = 𝟎

   along with 
𝐟 𝐰∗ 𝑡 , 𝐰̇∗ 𝑡 , 𝑡 = 𝟎

• That is, to determine the necessary conditions for an extremal we 
simply form the augmented integrand 𝑔( and write the Euler 
equations as if there were no constraints among the functions 𝐰 𝑡
• Note the similarity with the case of constrained optimization!
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The variational approach to optimal control

Roadmap:
1. We will first derive necessary conditions for optimal control assuming that 

the admissible controls are not bounded 
2. Next, we will heuristically introduce Pontryagin’s Minimum Principle as a 

generalization of the fundamental theorem of CoV
3. Finally, we will consider special cases of problems with bounded controls 

and state variables
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Necessary conditions for optimal control 
(with unbounded controls)

• The problem is to find an admissible control u∗ which causes the 
system

𝐱̇ 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡) 
   to follow an admissible trajectory x∗ that minimizes

the functional

𝐽 𝐮 = ℎ 𝐱 𝑡1 , 𝑡1 + ∫$!
$" 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 	𝑑𝑡	

•  Assumptions: ℎ ∈ 𝐶7, state and control regions are unbounded, 
𝑡8	and 𝐱(0) are fixed, 𝐱 is 𝑛×1 and 𝐮 is 𝑚×1 
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Necessary conditions for optimal control 
(with unbounded controls)

• Define the Hamiltonian

𝐻 𝐱 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 )𝐟(𝐱 𝑡 , 𝐮 𝑡 , 𝑡)
• The necessary conditions for optimality (proof to follow) are
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𝐱̇∗ 𝑡 = !*
!𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐩̇∗ 𝑡 = − !*
!𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = !*
!𝐮 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]
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with boundary conditions
𝜕ℎ
𝜕𝐱

𝐱∗ 𝑡$ , 𝑡$ − 𝐩∗ 𝑡$
%
𝛿𝐱$ + 𝐻 𝐱∗ 𝑡$ , 𝐮∗ 𝑡$ , 𝐩∗ 𝑡$ , 𝑡$ +

𝜕ℎ
𝜕𝑡

𝐱∗ 𝑡$ , 𝑡$ 𝛿𝑡$ = 0



Necessary conditions for optimal control 
(with unbounded controls)
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Necessary conditions for optimal control 
(with unbounded controls)

• Necessary conditions consist of a set of 2𝑛, first-order, differential equations 
(state and costate equations), and a set of 𝑚 algebraic equations (control 
equations) 
• The solution to the state and costate equations will contain 2𝑛 constants of 

integration 
• To obtain values for the constants, we use the 𝑛 equations 𝐱 𝑡3 = 𝐱3, and an 

additional set of 𝑛 (or 𝑛 + 1) equations from the boundary conditions
• Once again: 2-point boundary value problem
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Example

Find optimal control 𝑢(𝑡) to steer the system 

𝑥̈ 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, 𝑥̇ 0 = 0 to the origin 𝑥 𝑡4 = 0, 𝑥̇ 𝑡4 = 0, and to minimize 

𝐽 = 5
6𝛼𝑡4

6 + 5
6∫&"

&# 𝑏	𝑢6 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

(note: the final time 𝑡4 is free)

AA 203 | Lecture 44/9/24



Example

Find optimal control 𝑢(𝑡) to steer the system 

𝑥̈ 𝑡 = 𝑢 𝑡
from 𝑥 0 = 10, 𝑥̇ 0 = 0 to the origin 𝑥 𝑡4 = 0, 𝑥̇ 𝑡4 = 0, and to minimize 

𝐽 = 5
6𝛼𝑡4

6 + 5
6∫&"

&# 𝑏	𝑢6 𝑡 𝑑𝑡 ,     𝛼, 𝑏 > 0

• Solution: optimal time is 

𝑡4 =
1800𝑏
𝛼

5/8
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Necessary conditions for optimal control 
(with unbounded controls)

We want to prove that, with unbounded controls, the necessary optimality 
conditions are (𝐻 = 𝑔 + 𝐩9𝐟 is the Hamiltonian)

 along with the boundary conditions:
𝜕ℎ
𝜕𝐱

𝐱∗ 𝑡$ , 𝑡$ − 𝐩∗ 𝑡$
%
𝛿𝐱$ + 𝐻 𝐱∗ 𝑡$ , 𝐮∗ 𝑡$ , 𝐩∗ 𝑡$ , 𝑡$ +

𝜕ℎ
𝜕𝑡

𝐱∗ 𝑡$ , 𝑡$ 𝛿𝑡$ = 0
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𝐱̇∗ 𝑡 = !*
!𝐩 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝐩̇∗ 𝑡 = − !*
!𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

𝟎 = !*
!𝐮 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡

for all 𝑡 ∈ [𝑡!, 𝑡"]



Proof sketch of NOC

• For simplicity, assume that the terminal penalty is equal to zero, and 
that 𝑡4 and 𝐱(𝑡4) are fixed and given

• Consider the augmented cost function
𝑔& 𝐱 𝑡 , 𝐱̇ 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 ≔ 𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 + 𝐩 𝑡 %[𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 − 𝐱̇(𝑡)]

   where the {𝑝:(𝑡)}’s are Lagrange multipliers
• Note that we have simply added zero to the cost function!
• The augmented cost function is then 

𝐽((𝐮) = E
&"

&#
𝑔( 𝐱 𝑡 , 𝐱̇ 𝑡 , 𝐮 𝑡 , 𝐩 𝑡 , 𝑡 	𝑑𝑡
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Proof sketch of NOC

'
$!

$"
(

)

𝜕𝑔%
𝜕𝐱

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔%
𝜕𝐱̇

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

	𝛿𝐱 𝑡

+
𝜕𝑔%
𝜕𝐮

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐮 𝑡 +
𝜕𝑔%
𝜕𝐩

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV 

0 = 𝛿𝐽# 𝐮 =

By the CoV 
theorem 



Proof sketch of NOC

'
$!

$"
(

)

𝜕𝑔%
𝜕𝐱

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡 −
𝑑
𝑑𝑡
𝜕𝑔%
𝜕𝐱̇

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

	𝛿𝐱 𝑡

+
𝜕𝑔%
𝜕𝐮

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐮 𝑡 +
𝜕𝑔%
𝜕𝐩

𝐱∗ 𝑡 , 𝐱̇∗ 𝑡 , 𝐮∗ 𝑡 , 𝐩∗ 𝑡 , 𝑡
'

𝛿𝐩(𝑡) 𝑑𝑡
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On an extremal, by applying the fundamental theorem of the CoV 

= 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − 𝐱̇∗ 𝑡

= −
𝑑
𝑑𝑡
(−𝐩∗(𝑡))=

𝜕𝑔
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +

𝜕𝐟
𝜕𝐱 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 %𝐩∗(𝑡)

0 = 𝛿𝐽# 𝐮 =

By the CoV 
theorem 



Proof sketch of NOC

Considering each term in sequence, 
• 𝐟 𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 − 𝐱̇∗ 𝑡 = 𝟎, on an extremal
• The Lagrange multipliers are arbitrary, so we can select 

them to make the coefficient of 𝛿𝐱(𝑡) equal to zero, that is

	𝐩̇∗ 𝑡 = −
𝜕𝑔
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 −
𝜕𝐟
𝜕𝐱

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 )𝐩∗(𝑡)

• The remaining variation 𝛿𝐮 𝑡 , is independent, so its 
coefficient must be zero; thus
𝜕𝑔
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 +
𝜕𝐟
𝜕𝐮

𝐱∗ 𝑡 , 𝐮∗ 𝑡 , 𝑡 )𝐩∗ 𝑡 = 𝟎

By using the Hamiltonian formalism, one obtains the claim 

4/9/24 AA 203 | Lecture 4



Next time
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• Pontryagin’s Minimum Principle
• Special cases 
• Computational methods


