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Indirect methods

Goal: determine necessary conditions for optimality for a general class of optimal 
control problems
• “Optimize then discretize”
• Sometimes provides more direct (e.g., analytical) path to a solution

Reading:
• D. E. Kirk. Optimal control theory: an introduction, 2004.
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Key idea

Recall OCP: find an admissible control u∗ which causes the system

to follow an admissible trajectory x∗ that minimizes the functional

• For a function, we set gradient to zero to find stationary points, and then 
investigate higher order derivatives to determine minimum / maximum
• We’ll do something very similar for functionals 
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Calculus of variations (CoV)

• Calculus of variations: generalization of calculus that allows one to 
find maxima and minima of functionals (i.e., a “function of 
function”), by using variations

• Agenda:
1. Introduce new concepts for functionals by appealing to some familiar 

results from the theory of functions 
2. Apply such concepts to derive the fundamental theorem of CoV
3. Apply the CoV to optimal control  
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Preliminaries

• A functional 𝐽 is a rule of correspondence that assigns to each 
function 𝐱 in a certain class Ω (the “domain”) a unique real number
• Example: 𝐽 𝑥 = 	∫!!

!" 𝑥 𝑡 𝑑𝑡

• 𝐽 is a linear functional of 𝐱 if and only if 
𝐽 𝛼!𝐱 ! + 𝛼"𝐱 " = 𝛼!𝐽 𝐱 ! + 𝛼"𝐽(𝐱 " )

   for all 𝐱 ! , 𝐱 " , and 𝛼!𝐱 ! + 𝛼"𝐱 "  in Ω
• Example: previous functional is linear
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Preliminaries

To define the notion of maxima and minima, we need a notion of “closeness”

• The norm of a function is a rule of correspondence that assigns to each 
function 𝐱 ∈ Ω, defined over 𝑡 ∈ [𝑡", 𝑡#], a real number. The norm of 𝐱, 
denoted by 𝐱 , satisfies the following properties:
1. 𝐱 ≥ 0, and 𝐱 = 0 iff 𝐱 𝑡 = 0 for all 𝑡 ∈ [𝑡", 𝑡#]
2. 𝛼𝐱 = |𝛼| 𝐱  for all real numbers 𝛼
3. 𝐱 $ + 𝐱 % ≤ 𝐱 $ + 𝐱 %

• To compare the closeness of two functions 𝐲  and 𝐳,	we let 𝐱 𝑡 = 𝐲(𝑡) - 𝐳(𝑡)
• Example, considering scalar functions 𝑥 ∈ 𝐶!	: 𝑥 = max

!!"!"!"
	 {|𝑥(𝑡)|}
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Extrema for functionals

• A functional 𝐽 with domain Ω has a local minimum at 𝐱∗ 𝑡 ∈ Ω if 
there exists an 𝜖 > 0 such that  

𝐽 𝐱 𝑡 ≥ 𝐽(𝐱∗(𝑡))
  for all 𝐱 𝑡 ∈ Ω such that 

𝐱 𝑡 − 𝐱∗(𝑡) < 𝜖

• Maxima are defined similarly

• To find a minimum we define something similar to the differential of 
a function 
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Increments and variations

• The increment of a functional is defined as
Δ𝐽 𝐱 𝑡 , 𝛿𝐱 𝑡 ≔ 𝐽 𝐱 𝑡 + 𝛿𝐱 𝑡 − 𝐽(𝐱(𝑡))

• The increment of a functional can be written as 
Δ𝐽 𝐱, 𝛿𝐱 ≔ 𝛿𝐽 𝐱, 𝛿𝐱 + 𝑔 𝐱, 𝛿𝐱 ⋅ 𝛿𝐱

   where 𝛿𝐽 is linear in 𝛿𝐱. If
lim
$𝐱 →'

𝑔 𝐱, 𝛿𝐱 = 0

    then 𝐽 is said to be differentiable on 𝐱 and 𝛿𝐽 is the variation of 𝐽	at	𝐱 

Variation of 𝐱
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The fundamental theorem of CoV

• Let 𝐱(𝑡) be a vector function of 𝑡 in the class Ω, and 𝐽 𝐱  be a 
differentiable functional of 𝐱. Assume that the functions in 𝛺 are not 
constrained by any boundaries. If 𝐱∗ is an extremal, the variation of 𝐽 
must vanish at 𝐱∗, that is 
𝛿𝐽 𝐱∗, 𝛿𝐱 = 0 for all admissible 𝛿𝐱  (i.e., such that 𝐱 + 𝛿𝐱 ∈ Ω)

• Proof: by contradiction (See Kirk, Section 4.1).
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Applying CoV

• Let 𝑥 be a scalar function in the class of functions with continuous 
first derivatives. It is desired to find the function 𝑥∗ for which the 
functional 

𝐽 𝑥 = ?
(!

("
𝑔 𝑥 𝑡 , 𝑥̇ 𝑡 , 𝑡 𝑑𝑡

    has a relative extremum
• Assumptions: 𝑔 ∈ 𝐶", 𝑡', 𝑡)  are fixed, and 𝑥', 𝑥)  are fixed  
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Applying CoV

• Let 𝑥 be any curve in Ω, and determine the variation 𝛿𝐽 from the 
increment 

 Δ𝐽 𝑥, 𝛿𝑥 = 𝐽 𝑥 + 𝛿𝑥 − 𝐽 𝑥

	 = 	 ?
(!

("
𝑔 𝑥 + 𝛿𝑥, 𝑥̇ + 𝛿𝑥̇, 𝑡 𝑑𝑡 − ?

(!

("
𝑔 𝑥, 𝑥̇, 𝑡 𝑑𝑡

	 = ?
(!

("
𝑔 𝑥 + 𝛿𝑥, 𝑥̇ + 𝛿𝑥̇, 𝑡 − 𝑔 𝑥, 𝑥̇, 𝑡 𝑑𝑡

• Note that 𝑥̇ = 𝑑	𝑥(𝑡)/𝑑𝑡 and 𝛿𝑥̇ = 𝑑	𝛿𝑥(𝑡)/𝑑𝑡
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Applying CoV

• Expanding the integrand in a Taylor series, one obtains
Δ𝐽 𝑥, 𝛿𝑥 = ∫"!

"" 𝑔 𝑥, 𝑥̇, 𝑡 + #$
#%

𝑥, 𝑥̇, 𝑡 𝛿𝑥 + #$
#%̇

𝑥, 𝑥̇, 𝑡 𝛿𝑥̇ + 𝑜 𝛿𝑥, 𝛿𝑥̇ − 𝑔 𝑥, 𝑥̇, 𝑡 	𝑑𝑡

• From this it is clear that the variation is

𝛿𝐽 = ∫(!
(" 𝑔* 𝑥, 𝑥̇, 𝑡 𝛿𝑥 +  𝑔*̇ 𝑥, 𝑥̇, 𝑡 𝛿𝑥̇	 𝑑𝑡

𝑔# 𝑔#̇
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Applying CoV

• Integrating by parts one obtains 

𝛿𝐽 = :
&'

&(
𝑔' 𝑥, 𝑥̇, 𝑡  −

𝑑
𝑑𝑡 𝑔'̇ 𝑥, 𝑥̇, 𝑡 𝛿𝑥	𝑑𝑡 + 𝑔'̇ 𝑥, 𝑥̇, 𝑡 𝛿𝑥(𝑡) &'

&(

• Since 𝑥(𝑡') and 𝑥 𝑡)  are given, 𝛿𝑥 𝑡' = 0 and 𝛿𝑥 𝑡) = 0
• If we now consider an extremal curve, applying the CoV theorem 

yields

𝛿𝐽 = ∫(!
(" 𝑔* 𝑥∗, 𝑥̇∗, 𝑡  − ,

,(
𝑔*̇ 𝑥∗, 𝑥̇∗, 𝑡 𝛿𝑥	𝑑𝑡 = 0 

For all 𝛿𝑥! 
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Applying CoV

• Fundamental lemma of CoV: If a function ℎ is continuous and

?
(!

("
ℎ 𝑡 𝛿𝑥 𝑡 𝑑𝑡 = 0

   
for every function 𝛿𝑥 that is continuous in the interval [𝑡', 𝑡)], then 
ℎ  must be zero everywhere in the interval [𝑡', 𝑡)]
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Applying CoV

• Applying the fundamental lemma, we find that a necessary 
condition for 𝑥∗ to be an extremal is 

𝑔* 𝑥∗, 𝑥̇∗, 𝑡  −
𝑑
𝑑𝑡
𝑔*̇ 𝑥∗, 𝑥̇∗, 𝑡 = 0

    for all 𝑡 ∈ [𝑡', 𝑡)]

• Non-linear, ordinary, time-varying, second-order differential 
equation with split boundary conditions (at 𝑥(𝑡') and 𝑥(𝑡)))

Euler equation
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Example

• Find shortest path between two given points
• Solution: straight line!
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Summary

• A necessary condition for 𝑥∗ to be an extremal, in the case of fixed 
final time and fixed end point, is 

 𝑔* 𝑥∗, 𝑥̇∗, 𝑡  − ,
,(
𝑔*̇ 𝑥∗, 𝑥̇∗, 𝑡 = 0

• More generally, for functionals involving several independent 
functions, a necessary condition for 𝐱∗ to be an extremal, in the case 
of fixed final time and fixed end points, is 

 𝑔𝐱 𝐱∗, 𝐱̇∗, 𝑡  − ,
,(
𝑔𝐱̇ 𝐱∗, 𝐱̇∗, 𝑡 = 𝟎
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Next class

• More general boundary conditions 
• Constrained extrema 
• Application to optimal control 
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