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Dynamic Programming

Previous lectures: focus on discrete-time setting

This lecture: focus on continuous-time setting

* dynamic programming approach leads to HJB / HJI equation: non-linear partial differential
equation

« HJB application: solution to continuous LQR problem

« HJl application: reachability analysis

Readings: lecture notes and references therein, in particular:

Bansal S., Chen M., Herbert S., Tomlin C. J., “Hamilton-Jacobi reachability: A brief overview and recent advances,” 2017.

Chen M., Tomlin C. J., “Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management,” 2018.
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https://arxiv.org/abs/1709.07523
https://www.annualreviews.org/content/journals/10.1146/annurev-control-060117-104941

e
Continuous-time model

Last time:
* Model: X411 = f(Xg, Uy, k),
¢ COSt:](XO) — hN(XN) + ZIIL_(}Q(Xk» Uy, k)

This time:
* Model:x(t) = f(x(t),u(t),t),

+ Cost: ] (x(t)) = h(x(t), tr) + J) g(x(),u(®),7) dr

where t, and t are fixed
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Two-person, zero-sum differential games

What if there is another player (e.g., nature) that interferes with the fulfillment of our objective?

Two-person differential game:
* Model:x(t) = f(x(t),u(t),d(t)) (joint system dynamics),
+ Cost:J(x(tp)) = A(x(®)) + [, g(x(x),u(r),d(v)) dr

* Player 1, with control u(z), will attempt to maximize J, while Player 2, with control d(t), will aim
to minimize |, subject to the joint system dynamics

* x(7) is the joint system state
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Information pattern

 To fully specify the game, we need to specify the information pattern

* “Open-loop” strategies
* Player 1, with control u(t), declares entire plan
» Player 2, with control d(7), responds optimally
« Conservative, unrealistic, but computationally cheap

* “Nonanticipative” strategies

» Other agent acts based on state and control trajectory up to current time
* Notation: d(-) = I'[u](-)
 Disturbance still has the advantage: it gets to (instantaneously) react to the control!
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Hamilton-Jacobi-Isaacs (HJI) equation

Key idea: apply principle of optimality

The “truncated” problem is

Jx(t),t) = m

m i ax U g(x(0),u(r),d(z))dr + h(x(O))]

n
() u

Worst-case disturbance - aims to thwart the controller
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HJI equation

* Dynamic programming principle:

I 1

t+At
Jx(,0) = min m [ f g(x(0), u(®), d(®)dr + J(x(t + AD), ¢ + At)

ul(:) u

« Approximate integral and Taylor expand J (x(t + At), t + At)
» Derive Hamilton-Jacobi-Isaacs partial differential equation (HJI PDE)
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HJI equation

» Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) rlrll(a)x Ut g(x(r), u(7), d(T))dT + J(x(t + At), t + At)
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HJI equation

» Approximations for small At:

t+At
J(x(t),t) = Fr[rlll%?) rlrll(a)x Ut g(x(r), u(7), d(T))dT + J(x(t + At), t + At)

g(x(@),u(t),d(t))At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
—t—

t+At
J(x(t),t) = Fr[rlll%?) rlrll(a)x Ut g(x(r), u(7), d(T))dT + J(x(t + At), t + At)

g(x(@),u(t),d(t))At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
—t—

t+At
J(x(t),t) = rr[?&?) max [ L g(x(0),u(7),d(7))dr +] (x(t + A't), t + At)'

g(x(@), u('t), d(t))At Jx(t),t) + % -Atf(x(0),u(t),d(t)) + %At
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = | uﬁ )r%x U (x(r) u(7), d(r))dr +](x(t + At) t+ At)
g(x(@), u(t), d(t))At Jx(t),t) + & -Atf(x(0),u(t),d(t)) + %At

 Omit t dependence... )

J(x,t) = ml?xm(}n [g(x, u, d)At +J(x,t) + g—i Atf(x,u,d) + EM]

* Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

* J(x,t) does notdependonuord

Jx,t) =J(x t) + mjlxmdin [g(x, u, d)At + g—i Atf(x,u,d) + %At]
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = | uﬁ )r%x U g(x(r) u(7), d(r))dr +](x(t + At) t+ At)
g(x(@), u(t), d(t))At Jx(t),t) + & -Atf(x(0),u(t),d(t)) + %At

 Omit t dependence... )

J(x,t) = ml?xm(}n [g(x, u, d)At +J(x,t) + g—i Atf(x,u,d) + EM]

* Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

* J(x,t) does notdependonuord

0 0
J&t) = Hxt)+max mdin [g(x, u, d)At + a—i -Atf(x,u,d) + %At]
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = | uﬁ )r%x U g(x(r) u(7), d(r))dr +](x(t + At) t+ At)
g(x(@), u(t), d(t))At Jx(t),t) + & -Atf(x(0),u(t),d(t)) + %At

 Omit t dependence... )

J(x,t) = ml?xm(}n [g(x, u, d)At +J(x,t) + g—i Atf(x,u,d) + EM]

* Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

* J(x,t) does notdependonuord

aJ . aJ
0= EA% + max min [g(x, u, d)At + % Atf(x,u, d)]
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HJI equation

* Approximations for small At: x(t) + Atf (x,u,d)
t+At —
J(x(t),t) = | uﬁ )r%x U g(x(r) u(7), d(r))dr +](x(t + At) t+ At)
g(x(@), u(t), d(t))At Jx(t),t) + & -Atf(x(0),u(t),d(t)) + %At

 Omit t dependence... )

J(x,t) = ml?xm(}n [g(x, u, d)At +J(x,t) + g—i Atf(x,u,d) + EM]

* Assume (instantaneously) constant u and d = optimization over vectors, not functions!
* Order of max and min reverse (proof given in references)

* J(x,t) does notdependonuord

aJ . aJ
0= T + max min [g(x, ud) + < f(x,u, d)]
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HJI equation

The end result is the Hamilton-Jacobi-lsaacs (HJI) equation

daj . d]
0= En + max min [g(x, ud) + Fel f(x,u, d)]

with boundary condition \,

J(x,0) = h(x)

The “Hamiltonian”

* Given the cost-to-go function, the optimal control for
Player 1is

u*(x,t) = argmaxming(x,u,d) + —- f(x,u,d)
u d 0xX
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-
HJB equation

In case there is no disturbance, end result is the
Hamilton-Jacobi-Bellman (HJB) equation

Without a disturbance, u is usually
selected to minimize cost

O=g—]+m‘1n[g(xut)+ f(xut)]

with boundary condition|J(x,0) = h(x)

* Given the cost-to-go function, the optimal control is

u*(x, t)-argm1ng(xut)+ f(xut)
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Continuous-time LQR

Continuous-time LQR: select control inputs to minimize

Txa) = ()" Hx(t) + 5 [T QUX(0) + u(t) ROu(vldt

subject to the dynamics
x(t) = A()x(t) + B(t)u(t)

Assumptions:

*H=H">0 0)=0®)" 20,R(t) =R(®)" > 0
* ty and tr specified

* X(t) and u(t) unconstrained
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e
Continuous-time LQR

* As before, value function takes the form: J(x(t),t) = %x(t)TV(t)x(t)
* The HJB equation reduces to an ODE (the Riccati equation):

V(1) = Q) — V(O BOR® T BOTV(E) + VAR + A®TV (1)

* Riccati equation is integrated backwards, with boundary condition V (t5) = H
* Once we find V(t), the control policy is

u'(t) = —R(t)" ' B(t)" V(¢)x(t)

 Analogously to the discrete case, under some additional assumptions, V(t) —
constant in the infinite horizon setting

* See Notes §3.3 for more details
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https://github.com/StanfordASL/AA203-Notes/blob/master/notes.pdf

Applications of differential games

* Pursuit-evasion games

* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)
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Applications of differential games

* Pursuit-evasion games

* homicidal chauffeur problem
 the lady in the lake

* Reachability analysis

* And many more (e.g., in economics)
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Reachability analysis: avoidance

Reachableset ) <afe region

=&

Inputs: Control policy

* System model e

* Unsafe region: Backward reachable set
e.g., obstacle (States leading to danger)
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Reachability analysis: goal reaching

Backward reachable set
— Target set
/

Control policy

Inputs: I

* System model Backward reachable set
* Goalregion (States leading to goal)
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Reachability analysis ﬁ:’<‘

Model of robot
Unsafe region

Model of robot
Goal region

-

o A(t) ={x:3T[u](-),vu(:),x = f(x,u,d),x(t) =X,x(0) € 7'}

Backward reachable set (states leading to danger)

Control policy

Control policy

Backward reachable set (states leading to goal)

o R(t) ={x:VIl[u](-),3u(),x=f(xud),x(t) =%Xx(0) € T}
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Reachability analysis g’@
States at time t satisfying the following:

there exists a disturbance such that for all
control, system enters target setatt = 0

Model of robot
Unsafe region

Model of robot
Goal region

-

-

o A(t) ={x:3l'u](-),vu(-),x = f(x,u,d),x(t) =x,x(0) € 7'}

Backward reachable set (states leading to danger)

Control policy

Control policy

Backward reachable set (states leading to goal)

o R(t) ={x:VIl[u](-),Ju(-),x=f(xud),x(t) =xx(0) € T}

States at time ¢ satisfying the following;:

for all disturbances, there exists a control such that system

enters targetsetatt =0
AA 203 | Lecture 11
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From HIJI to reachability analysis

* Computation of the BRS entails solving a
differential game where the outcome is
Boolean (the system either reaches the
target set or not)

* One can “encode” this Boolean outcome in
the HJI PDE by (1) removing the running
cost and (2) picking the final cost to denote

set membership

* Value function at each state is the worst case
terminal value you can reach
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From HIJI to reachability analysis

* Hamilton-Jacobi Equation
e 0= % + mé;lxmuin ’g(x,u,d) + g—i-f(x,u, d)], J(x,0) = h(x)

* Remove running cost

e 0= %+ mé;lxmuin [g—i-f(x,u,d)], J(x,0) = h(x)

* Pick final cost such that

’ XET@h(X)SO (xr»yéﬂ X = ;r
« Example: If T = {x:\/xﬁ + y2 < R} c R3, N \9 6,
we can pick A

R

h(xr: Vr 01‘) — xﬁ + YTZ —R
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Pick Final Cost

* Why is this correct?
» Final state x(0) isin T if and only if R(x(0)) < 0

» To avoid T, control should maximize h(x(0))
* Worst-case disturbance would minimize

« J(x,t) = Ilp[{lr]l max h(x(O))

X, (£) J(x¢(0),0) >0
J(x,(0),0) <0
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Reaching vs. Avoiding

% J
* Avoiding danger (A0 B * Reaching a goal

* BRS definition * BRS definition
A(t) = {x:3Al'u](-), Vu(-),x = f(x,u,d),x(t) = X,x(0) € T} R(t) = {x:VI'[u](-),Iu(),x = f(x,u,d),x(t) =x,x(0) € T}

* Value function » Value function
J(x,t) = rlp[n]l max h(x(O)) J(x,t) = rlp[ai< min h(x(O))

 HJI  HJI

d] a] a] d]

§+maxmdm[( ) f(xud)] 0 E+m1nméax[( ) f(xud)] 0
* Optimal control * Optimal control

d] 0]
u* —argmaxm&n( ) f(x,u,d) u* —argmmm(?x< ) f(x,u,d)
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“Sets” vs. “Tubes”

» Backward reachable set (BRS) » Backward reachable tube (BRT)

* Only final time matters » Keep track of entire time duration
* Initial states that pass * Initial states that pass through
through target are not target arein BRT

necessarily in BRS
* Notideal for safety

» Used to make safety guarantees
Xg(g())

x,(0)

J(x4(0),0)>0  *o(O R J(x4(0),0) > 0
J(xp(0),0) <0 o J(x,(0),0) <0
J(x5(0),0) >0 J(x5(0),0) <0

Xp (1)
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“Sets” vs. “Tubes”

» Backward reachable set (BRS) » Backward reachable tube (BRT)

xg(gO)
X, (0)
J(5(0),0) >0 ¥ A < 0 J(x4(0),0) > 0
J(x(0),0) <0 - J(x,(0),0) <0
J(x5(0),0) >0 J(x5(0),0) <0
Xp ()
Value function definition Value function definition
J(x,t) = rlp[}lr]l max h(x(O)) J(x,t) = Illl[}lf]l max TIET%}:% h(X(T))
Value function obtained from Value function obtained from
%+ max min [(6 ) f(x,u, d)] =0 %"‘min{maxm(}n [(a ) f&xu, d)] }
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Computational aspects

« Computational complexity (traditional PDE solver)
* J(x,t) iscomputed on an (n + 1)-dimensional grid
* n < 5isreasonable; larger requires some compromises

* Dimensionality reduction methods (decoupling)
sometimes help

* Alternatives/related approaches
* Sacrifice global optimality
* Give up guarantees

* NN-based PDE solvers
« Sampling-based methods
* Reinforcement learning
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Example: pursuit/evasion with two identical vehicles

« With evader (a), pursuer (b) dynamics

Tq v cos(6,) Ty v cos(fp)
[ya] = lvsin(@a)] : [yb] = [Usin(Qb)] , Ug, Up € [—Umaxs Umax]
b

o, Ug 0, U

we consider the relative systemin (a)’s frame

1 —v + vcos(r3) + Uy To
To| = vsin(xrsg) — ug Ty

T3 Up — Ug

T );3
Courtesy of X,
lan Mitchell, v
“ToolboxLS”, 0

Section 2.6.1 evader (player 1) pursuer (player II)
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https://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS-1.1.pdf
https://www.cs.ubc.ca/~mitchell/ToolboxLS/toolboxLS-1.1.pdf

Next time

 Model Predictive Control
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