
AA203
Optimal and Learning-based Control

Intro to Reinforcement Learning

Roadmap

5/1/2024 AA 203 | Lecture 10

Open-loop

Indirect
methods

Direct
methods

Closed-loop

DP HJB / HJI

MPC

Adaptive
optimal control

Model-based RL

Model-free RL
Control

Optimal and
learning control

Adaptive controlFeedback control

LQR iLQR DDP
2

Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

• Monte Carlo Learning
• Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs

5/1/2024 AA 203 | Lecture 10 3

What is reinforcement learning?
Fundamentally:

• A mathematical formalism for learning-based decision making

• An approach for learning decision making and control from experience

take action

observe state

𝑢!

𝑥! 𝑟!
𝑥!"#

𝜏 = (𝑥!, 𝑢!, … , 𝑥", 𝑢")

Success is measured by a scalar reward

5/1/2024 AA 203 | Lecture 10 4

Why reinforcement learning?
• Only need to specify a reward function and the agent learn everything else!

Silver et al. 2016 Levine*, Finn* et al. 2016
Mnih et al. 2014

ChatGPT “Alignment”- OpenAI

Deep Q Network

5/1/2024 AA 203 | Lecture 10 5

Characteristics of reinforcement learning?

How does RL differ from other machine learning paradigms?

• No supervision, only a reward signal

• Feedback can be delayed, not instantaneous (i.e., credit assignment)

• Data is not i.i.d., earlier decisions affect later interactions (tension between exploration and exploitation)

5/1/2024 AA 203 | Lecture 10 6

Markov Decision Process
State:

Action:

Transition function / Dynamics: 𝑇 𝑥" ∣ 𝑥"#$, 𝑢"#$ = 𝑝 𝑥" ∣ 𝑥"#$, 𝑢"#$
𝑢 ∈ 𝒰
𝑥 ∈ 𝒳

Reward function: 𝑟" = 𝑅(𝑥", 𝑢"):𝒳×𝒰 → ℝ
Discount factor: 𝛾 ∈ (0,1)

Typically represented as a tuple

ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Goal: choose a policy that maximizes cumulative (discounted) reward

𝜋∗ = arg𝑚𝑎𝑥
&

𝔼' ∑
"()
𝛾"𝑅 𝑥", 𝜋 𝑥"

5/1/2024 AA 203 | Lecture 10 7

Value functions

State-value function: “the expected total reward if we start in that state and act
 accordingly to a particular policy”

Action-state value function: “the expected total reward if we start in that state,
 take an action, and act accordingly to a particular
 policy”

Optimal state-value function:

Optimal action-state value function:

V*(x) = max
π

Vπ(x)

Q*(x, u) = max
π

Qπ(x, u)

5/1/2024 AA 203 | Lecture 10 8

Bellman Equations
The optimal value function satisfies Bellman’s equation:

V* (xt) = max
u

R (xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) V* (xt+1)

Vπ (xt) = 𝔼π [R (xt, π (xt)) + γVπ (xt+1)]
= R (xt, π (xt)) + γ ∑

xt+1∈X
T (xt+1 ∣ xt, π (xt)) Vπ (xt+1)

Bellman Optimality Equation

Bellman Expectation Equation

For any stationary policy 𝜋, the values are the unique solution to the equationVπ(x) := 𝔼 ∑
t≥0

γtR (xt, π (xt))

5/1/2024 AA 203 | Lecture 10 9

Bellman Equations

For any stationary policy 𝜋, the corresponding Q function satisfies

𝑄"(𝑥# , 𝑢#) = 𝑅(𝑥# , 𝑢#) + 𝛾 ∑
$$%&∈&

𝑇 𝑥#'(∣ 𝑥# , 𝑢# 𝑄" 𝑥#'(, 𝜋 𝑥#'(Bellman Expectation Equation

𝑄∗(𝑥# , 𝑢#) = 𝑅(𝑥# , 𝑢#) + 𝛾 ∑
$$%&∈&

𝑇 𝑥#'(∣ 𝑥# , 𝑢# 𝑚𝑎𝑥*$%&
𝑄∗ 𝑥#'(, 𝑢#'(

The optimal state-action value function (Q function) 𝑄∗(𝑥, 𝑢) satisfies Bellman’s equation:

Bellman Optimality Equation

5/1/2024 AA 203 | Lecture 10 10

Solving MDPs

All of these formulations require a model of the MDP!

To solve unknown MDPs, we’ll use interactions with the environment

Limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model 𝑇 𝑥"*$ ∣ 𝑥", 𝑢"

• Iteration over (and storage of) all states and actions requires small, discrete state-action space Function approximation

In previous lectures, we resorted to exact methods

Sampling-based approximations

5/1/2024 AA 203 | Lecture 10 11

Outline

From exact methods to model-free control

• Monte Carlo Learning

5/1/2024 AA 203 | Lecture 10 12

Monte Carlo Reinforcement Learning
• MC methods learn directly from episodes of experience

• MC is model-free: no knowledge of MDP transitions / rewards

• MC uses the simplest possible idea: value = mean return
• Recall that the return is the total discounted reward:

• Caveat: can only apply MC to episodic MDPs
• All episodes must terminate

𝐺# = 𝑅#'(+ 𝛾𝑅#'+ +⋯+ 𝛾,-(𝑅,

5/1/2024 AA 203 | Lecture 10 13

Monte Carlo Policy Evaluation
• Let’s consider Monte Carlo methods for learning the state-value function 𝑉&(𝑥) from episodes of experience

under policy 𝜋

• Recall that the value function is the expected return

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

𝐺# = 𝑅#'(+ 𝛾𝑅#'+ +⋯+ 𝛾,-(𝑅,

𝑉"(𝑥#) = 𝔼 ∑
#'.#

𝛾#'𝑅 𝑥#' , 𝜋 𝑥#' = 𝔼 𝐺# ∣ 𝑥#

5/1/2024 AA 203 | Lecture 10 14

Monte Carlo Policy Evaluation
Every-visit

• To evaluate state 𝑥

• Every time-step 𝑡 that state 𝑥 is visited in an episode

• Increment counter 𝑁(𝑥) ← 𝑁(𝑥) + 1

• Increment total return 𝑆(𝑥) ← 𝑆(𝑥) + 𝐺"
• Value is estimated by mean return	 D𝑉 𝑥 = 𝑆(𝑥)/𝑁(𝑥)

• By law of large numbers 2𝑉 𝑥 → 𝑉! 𝑥 	as	𝑁(𝑥) → ∞

• To evaluate state 𝑥

• The first time-step 𝑡 that state 𝑥 is visited in an episode

• Increment counter 𝑁(𝑥) ← 𝑁(𝑥) + 1

• Increment total return 𝑆(𝑥) ← 𝑆(𝑥) + 𝐺"
• Value is estimated by mean return D𝑉 𝑥 = 𝑆(𝑥)/𝑁(𝑥)

• By law of large numbers 2𝑉 𝑥 → 𝑉! 𝑥 	as	𝑁(𝑥) → ∞

First-visit

5/1/2024 AA 203 | Lecture 10 15

Example: Blackjack
• States (200 possible states):

• Current sum (12-21)
• Dealer’s showing card (ace-10)
• Do I have a ‘usable’ ace (yes-no)

• Actions:
• Stand: stop receiving cards (and terminate)
• Hit: take another card (no replacement)

• Reward:
• For stand:

• +1 if sum of cards > sum of dealer cards

• 0 if sum of cards = sum of dealer cards

• -1 if sum of cards < sum of dealer cards
• For hit:

• -1 if sum of cards > 21 (and terminate)
• 0 otherwise

• Transitions:
• Automatically hit if sum of cards < 12

• Policy:
• Stand if sum of cards ≥ 20, otherwise hit

5/1/2024 AA 203 | Lecture 10 16

Example: Blackjack
Small exercise:

1. Consider the diagrams on the right
a. Why does the estimated value function

jump up for the last two rows in the
rear?

b. Why does it drop off for the whole last
row on the left?

2. Would you expect results to be different
with EV-MC? Why or why not?

5/1/2024 AA 203 | Lecture 10 17

Example: Blackjack
The mean 𝜇!, 𝜇", …	of a sequence 𝑥!, 𝑥", …	 can be
computed incrementally

• We incrementally update 4𝑉 𝑥 after every episode
𝜏 = (𝑥#, 𝑢#, … , 𝑥$, 𝑢$)

• For each state 𝑥% with return 𝐺%

N (xt) ← N (xt) + 1

̂V (xt) ← ̂V (xt) + 1
N (xt) (Gt − ̂V (xt))

• In non-stationary problems, it is often useful to track a
running mean to forget old (and ultimately less relevant)
episodes

̂V (xt) ← ̂V (xt) + α (Gt − ̂V (xt))
5/1/2024 AA 203 | Lecture 10 18

Outline

From exact methods to model-free control

• Temporal-Difference (TD) Learning

5/1/2024 AA 203 | Lecture 10 19

Temporal-Difference Learning
• TD is a combination of Monte Carlo and Dynamic Programming ideas

• Like MC, TD is model-free: no knowledge of MDP transitions / rewards. TD can learn from experience

• Like DP, TD methods update estimates based in part on other learned estimates, without waiting for a final
outcome (they bootstrap)

• TD updates a guess towards a guess

5/1/2024 AA 203 | Lecture 10 20

Temporal-Difference Learning
• To compare MC and TD, let us consider the task of learning 𝑉& from experience under policy 𝜋
• Incremental every-visit Monte Carlo:

• Update value D𝑉 𝑥" toward actual return 𝐺"

• Temporal-difference algorithm:
• Update value D𝑉 𝑥" toward estimated return 𝑅" + 𝛾 D𝑉 𝑥"*$

• 𝑅" + 𝛾 D𝑉 𝑥"*$ is called TD target
• 𝛿" = 𝑅" + 𝛾K𝑉 𝑥"*$ − K𝑉 𝑥" is called TD error

!𝑉 𝑥# ← !𝑉 𝑥# + 𝛼 𝐺# − !𝑉 𝑥#

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝑅8 + 𝛾 !𝑉 𝑥MNO − !𝑉 𝑥M

TD methods combine:

1) the sampling of Monte Carlo
2) with the bootstrapping of DP

5/1/2024 AA 203 | Lecture 10 21

Advantages and disadvantages of MC vs
TD

• TD can learn before knowing the final outcome
• TD can learn online after every step
• MC must wait until the end of the episode

• TD can learn without the final outcome
• TD can learn from incomplete sequences
• MC can only learn from complete sequences
• TD works in continuing (non-terminating) environments
• MC only works in episodic (terminating) environments

5/1/2024 AA 203 | Lecture 10 22

Bias-Variance Trade-off

• Return 𝐺" = 𝑅"*$ + 𝛾𝑅"*+ +⋯+ 𝛾,#$𝑅, is an unbiased estimate of 𝑉&(𝑥)
• In theory, the true TD target 𝑅" + 𝛾𝑉 𝑥"*$ is also an unbiased estimate of 𝑉&(𝑥)
• TD target 𝑅" + 𝛾 D𝑉 𝑥"*$ is a biased estimate of 𝑉&(𝑥)
• However, the TD target is much lower variance than the return

• The return 𝐺" depends on a full sequence of random actions, transitions, rewards (i.e., evaluated at the end
of the episode)

• The TD error only depends on one random action, transition, reward

5/1/2024 AA 203 | Lecture 10 23

Monte-Carlo Backup

𝑥)

𝑢)

𝑥)*+ 𝑟)

Terminal state

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝐺8 − !𝑉 𝑥M

5/1/2024 AA 203 | Lecture 10 24

Temporal-Difference Backup

𝑥)

𝑢)

𝑥)*+ 𝑟)

𝑢)

𝑥)*+𝑟)

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝑅8 + 𝛾 !𝑉 𝑥MNO − !𝑉 𝑥M

5/1/2024 AA 203 | Lecture 10 25

Dynamic Programming Backup
!𝑉 𝑥M ← 𝔼 𝑅M + 𝛾 !𝑉 𝑥MNO

𝑥)

5/1/2024 AA 203 | Lecture 10 26

Bootstrapping and sampling
• Sampling: define the update through samples to approximate expectations

• MC samples
• TD samples
• DP does not sample

• Bootstrapping: define the update through an estimate
• MC does not bootstrap
• TD bootstraps
• DP bootstraps

5/1/2024 AA 203 | Lecture 10 27

A unifying view of RL

5/1/2024 AA 203 | Lecture 10 28

Outline

From exact methods to model-free control

• Monte Carlo Learning
• Temporal-Difference (TD) Learning

5/1/2024 AA 203 | Lecture 10 29

(Review) Generalized Policy Iteration
In previous lectures, we discussed Policy Iteration as consisting of two simultaneous, interactive processes: Policy
Evaluation and Policy Improvement

We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy-evaluation and policy
improvement processes interact, independent of the granularity and other details of the two processes.

Policy Evaluation: Iterative policy evaluation
Policy Improvement: Greedy policy improvement

5/1/2024 AA 203 | Lecture 10 30

GPI with Monte-Carlo Evaluation

Policy Evaluation: Monte-Carlo policy evaluation of 𝑉(𝑥)?

Policy Improvement: Greedy policy improvement?

Problem:

Greedy policy improvement over 𝑉(𝑥) requires a model of the
MDP!

On the other hand, greedy policy improvement over 𝑄(𝑥, 𝑢)
does not

𝜋&'!(𝑥) = arg𝑚𝑎𝑥
(

𝑅(𝑥, 𝑢) + 𝛾 ∑
)!"#∈𝒳

𝑇 𝑥%'! ∣ 𝑥%, 𝑢% 𝑉&'! 𝑥%'!

𝜋&'!(𝑥) = arg𝑚𝑎𝑥
(
𝑄(𝑥, 𝑢)

5/1/2024 AA 203 | Lecture 10 31

GPI with state-action value function

Policy Evaluation: Monte-Carlo policy evaluation of 𝑄(𝑥, 𝑢)

Policy Improvement: Greedy policy improvement?

Problem:

Exploration! Let’s consider an example:

• Need to choose among two possible doors:
• You open the left door: 𝑅 = 0, 𝑉(left) = 0
• You open the right door: 𝑅 = 1, 𝑉(right) = 1
• You open the right door: 𝑅 = 3,𝑉(right) = 2
• You open the right door: 𝑅 = 2,𝑉(right) = 2
• …

To estimate state-action values through samples, every
state-action pair needs to be visited (opposed to each
state as in MC estimation of 𝑉(𝑥))

Deterministic policies do not allow this exploration

5/1/2024 AA 203 | Lecture 10 32

A simple (but effective) strategy: 𝜖-Greedy
Exploration

π(u ∣ x) =
ϵ
m + 1 − ϵ if u* = argmax

u∈𝒰
Q(x, u)

ϵ
m otherwise

• With probability 1 − 𝜖, choose the greedy action

• With probability 𝜖, choose a random action
• Ensures that all 𝑚	actions are tried with non-zero probability

Policy Evaluation: Monte-Carlo policy evaluation of 𝑄(𝑥, 𝑢)

Policy Improvement: 𝜖-Greedy policy improvement?

5/1/2024 AA 203 | Lecture 10 33

Monte-Carlo Control

Policy Evaluation: Monte-Carlo policy evaluation of D𝑄(𝑥, 𝑢) ≈ 𝑄(𝑥, 𝑢)

Policy Improvement: 𝜖−Greedy policy improvement

5/1/2024 AA 203 | Lecture 10 34

Example: Blackjack

5/1/2024 AA 203 | Lecture 10 35

To recap…

We introduced core ideas such as Monte-Carlo and Temporal-Difference Learning and
derived ways to solve unknown MDPs

However, we did not discuss methods to deal with high-dimensional state/action
spaces… more on this later!

We discussed the main limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model 𝑇 𝑥"*$ ∣ 𝑥", 𝑢"

• Iteration over (and storage of) all states and actions requires small, discrete state-action space

Sampling-based approximations

Function approximation

5/1/2024 AA 203 | Lecture 10 36

Outline

A taxonomy of RL algorithms & important trade-offs

5/1/2024 AA 203 | Lecture 10 37

A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics 𝑇(𝑥%'!|𝑥% , 𝑢%)do not use dynamics 𝑇(𝑥%'!|𝑥% , 𝑢%)

Given the model

𝑇(𝑥%'!|𝑥% , 𝑢%) is knowndirectly maximize the RL
objective

𝔼,∼.$(,) ∑
%1#

2
𝛾%𝑟 𝑥%, 𝑢%

Estimate 𝑓3 ≈ 𝑇(𝑥%'!|𝑥%, 𝑢%)policy implicitly defined via
𝑉(𝑥) or 𝑄(𝑥, 𝑢)

𝜋 𝑥% = arg𝑚𝑎𝑥
&
𝑄 𝑥% , 𝑢%

5/1/2024 AA 203 | Lecture 10 38

The skeleton of an RL algorithm

𝜏 = (𝑥D, 𝑢D, … , 𝑥E, 𝑢E)

𝜋(𝑢#|𝑥#)

Generate samples

Fit a model /
estimate return

Improve the policy

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

5/1/2024 AA 203 | Lecture 10 39

Why so many RL algorithms?
• Different tradeoffs:

• Sample efficiency
• Stability & easy of use

• Different assumptions:
• Stochastic or deterministic
• Continuous or discrete
• Episodic or infinite horizon

• Different things are easy or hard in different settings:
• Easier to represent the policy?
• Easier to represent the model?

5/1/2024 AA 203 | Lecture 10 40

Comparison: sample efficiency
• Sample efficiency = how many samples do we need to get a good policy?

• Crucial question: is the algorithm off policy?
• Off policy: able to improve the policy without generating new samples from the current policy
• On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!

5/1/2024 AA 203 | Lecture 10 41

Comparison: stability and ease of use
• Does it converge?
• And if it does, to what?
• Does it always converge?

• Supervised learning: almost always gradient descent
• Reinforcement learning: often not gradient descent

• Q-learning: fixed point iteration
• Model-based RL: model estimator is not optimized for expected reward

5/1/2024 AA 203 | Lecture 10 42

Next time

• HJB, HJI, and reachability analysis

5/1/2024 AA 203 | Lecture 10 43

