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Outline

What is Reinforcement Learning? (and the RL setting)

From exact methods to model-free control

• Monte Carlo Learning
• Temporal-Difference (TD) Learning

A taxonomy of RL algorithms & important trade-offs
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What is reinforcement learning?
Fundamentally:

• A mathematical formalism for learning-based decision making

• An approach for learning decision making and control from experience 

take action

observe state

𝑢!

𝑥! 𝑟!
𝑥!"#

𝜏 = (𝑥!, 𝑢!, … , 𝑥", 𝑢")

Success is measured by a scalar reward
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Why reinforcement learning?
• Only need to specify a reward function and the agent learn everything else!

Silver et al. 2016 Levine*, Finn* et al. 2016
Mnih et al. 2014

ChatGPT “Alignment”- OpenAI

Deep Q Network
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Characteristics of reinforcement learning?

How does RL differ from other machine learning paradigms?

• No supervision, only a reward signal

• Feedback can be delayed, not instantaneous (i.e., credit assignment)

• Data is not i.i.d., earlier decisions affect later interactions (tension between exploration and exploitation)

5/1/2024 AA 203 | Lecture 10 6



Markov Decision Process
State:              

Action:            

Transition function / Dynamics:         𝑇 𝑥" ∣ 𝑥"#$, 𝑢"#$ = 𝑝 𝑥" ∣ 𝑥"#$, 𝑢"#$
𝑢 ∈ 𝒰
𝑥 ∈ 𝒳

Reward function:            𝑟" = 𝑅(𝑥", 𝑢"):𝒳×𝒰 → ℝ
Discount factor: 𝛾 ∈ (0,1)

Typically represented as a tuple

ℳ = (𝒳,𝒰, 𝑇, 𝑅, 𝛾)

Goal: choose a policy that maximizes cumulative (discounted) reward 

𝜋∗ = arg𝑚𝑎𝑥
&

𝔼' ∑
"()
𝛾"𝑅 𝑥", 𝜋 𝑥"
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Value functions

State-value function: “the expected total reward if we start in that state and act 
       accordingly to a particular policy”

Action-state value function: “the expected total reward if we start in that state, 
  take an action, and act accordingly to a particular 
  policy”

Optimal state-value function:

Optimal action-state value function:

V*(x) = max
π

Vπ(x)

Q*(x, u) = max
π

Qπ(x, u)
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Bellman Equations
The optimal value function satisfies Bellman’s equation:

V* (xt) = max
u

R (xt, ut) + γ ∑
xt+1∈X

T (xt+1 ∣ xt, ut) V* (xt+1)

Vπ (xt) = 𝔼π [R (xt, π (xt)) + γVπ (xt+1)]
= R (xt, π (xt)) + γ ∑

xt+1∈X
T (xt+1 ∣ xt, π (xt)) Vπ (xt+1)

Bellman Optimality Equation

Bellman Expectation Equation

For any stationary policy 𝜋, the values          are the unique solution to the equationVπ(x) := 𝔼 ∑
t≥0

γtR (xt, π (xt))
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Bellman Equations

For any stationary policy 𝜋, the corresponding Q function satisfies

𝑄"(𝑥# , 𝑢#) = 𝑅(𝑥# , 𝑢#) + 𝛾 ∑
$$%&∈&

𝑇 𝑥#'( ∣ 𝑥# , 𝑢# 𝑄" 𝑥#'(, 𝜋 𝑥#'( Bellman Expectation Equation

𝑄∗(𝑥# , 𝑢#) = 𝑅(𝑥# , 𝑢#) + 𝛾 ∑
$$%&∈&

𝑇 𝑥#'( ∣ 𝑥# , 𝑢# 𝑚𝑎𝑥*$%&
𝑄∗ 𝑥#'(, 𝑢#'(

The optimal state-action value function (Q function) 𝑄∗(𝑥, 𝑢) satisfies Bellman’s equation:

Bellman Optimality Equation
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Solving MDPs

All of these formulations require a model of the MDP!

To solve unknown MDPs, we’ll use interactions with the environment 

Limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model 𝑇 𝑥"*$ ∣ 𝑥", 𝑢"

• Iteration over (and storage of) all states and actions requires small, discrete state-action space Function approximation

In previous lectures, we resorted to exact methods

Sampling-based approximations
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From exact methods to model-free control

• Monte Carlo Learning
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Monte Carlo Reinforcement Learning
• MC methods learn directly from episodes of experience 

• MC is model-free: no knowledge of MDP transitions / rewards

• MC uses the simplest possible idea: value = mean return 
• Recall that the return is the total discounted reward:

• Caveat: can only apply MC to episodic MDPs
• All episodes must terminate

𝐺# = 𝑅#'( + 𝛾𝑅#'+ +⋯+ 𝛾,-(𝑅,
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Monte Carlo Policy Evaluation
• Let’s consider Monte Carlo methods for learning the state-value function 𝑉&(𝑥) from episodes of experience 

under policy 𝜋

• Recall that the value function is the expected return 

• Monte-Carlo policy evaluation uses empirical mean return instead of expected return

𝐺# = 𝑅#'( + 𝛾𝑅#'+ +⋯+ 𝛾,-(𝑅,

𝑉"(𝑥#) = 𝔼 ∑
#'.#

𝛾#'𝑅 𝑥#' , 𝜋 𝑥#' = 𝔼 𝐺# ∣ 𝑥#

5/1/2024 AA 203 | Lecture 10 14



Monte Carlo Policy Evaluation
Every-visit

• To evaluate state 𝑥

• Every time-step 𝑡 that state 𝑥 is visited in an episode

• Increment counter 𝑁(𝑥) ← 𝑁(𝑥) + 1

• Increment total return 𝑆(𝑥) ← 𝑆(𝑥) + 𝐺"
• Value is estimated by mean return	 D𝑉 𝑥 = 𝑆(𝑥)/𝑁(𝑥)

• By law of large numbers 2𝑉 𝑥 → 𝑉! 𝑥 	as	𝑁(𝑥) → ∞

• To evaluate state 𝑥

• The first time-step 𝑡 that state 𝑥 is visited in an episode

• Increment counter 𝑁(𝑥) ← 𝑁(𝑥) + 1

• Increment total return 𝑆(𝑥) ← 𝑆(𝑥) + 𝐺"
• Value is estimated by mean return D𝑉 𝑥 = 𝑆(𝑥)/𝑁(𝑥)

• By law of large numbers 2𝑉 𝑥 → 𝑉! 𝑥 	as	𝑁(𝑥) → ∞

First-visit
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Example: Blackjack
• States (200 possible states):

• Current sum (12-21)
• Dealer’s showing card (ace-10)
• Do I have a ‘usable’ ace (yes-no)

• Actions:
• Stand: stop receiving cards (and terminate)
• Hit: take another card (no replacement)

• Reward:
• For stand:

• +1 if sum of cards > sum of dealer cards

• 0 if sum of cards = sum of dealer cards

• -1 if sum of cards < sum of dealer cards
• For hit:

• -1 if sum of cards > 21 (and terminate)
• 0 otherwise

• Transitions:
• Automatically hit if sum of cards < 12

• Policy:
• Stand if sum of cards ≥ 20, otherwise hit
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Example: Blackjack
Small exercise:

1. Consider the diagrams on the right
a. Why does the estimated value function 

jump up for the last two rows in the 
rear?

b. Why does it drop off for the whole last 
row on the left?

2. Would you expect results to be different 
with EV-MC? Why or why not?
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Example: Blackjack
The mean 𝜇!, 𝜇", …	of a sequence 𝑥!, 𝑥", …	  can be 
computed incrementally

• We incrementally update 4𝑉 𝑥 after every episode 
𝜏 = (𝑥#, 𝑢#, … , 𝑥$, 𝑢$)

 
• For each state 𝑥% with return 𝐺%

N (xt) ← N (xt) + 1

̂V (xt) ← ̂V (xt) + 1
N (xt) (Gt − ̂V (xt))

• In non-stationary problems, it is often useful to track a 
running mean to forget old (and ultimately less relevant) 
episodes

̂V (xt) ← ̂V (xt) + α (Gt − ̂V (xt))
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From exact methods to model-free control

• Temporal-Difference (TD) Learning
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Temporal-Difference Learning
• TD is a combination of Monte Carlo and Dynamic Programming ideas

• Like MC, TD is model-free: no knowledge of MDP transitions / rewards. TD can learn from experience

• Like DP, TD methods update estimates based in part on other learned estimates, without waiting for a final 
outcome (they bootstrap)

• TD updates a guess towards a guess
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Temporal-Difference Learning
• To compare MC and TD, let us consider the task of learning 𝑉& from experience under policy 𝜋
• Incremental every-visit Monte Carlo:

• Update value D𝑉 𝑥" toward actual return 𝐺"

• Temporal-difference algorithm:
• Update value D𝑉 𝑥" toward estimated return 𝑅" + 𝛾 D𝑉 𝑥"*$

• 𝑅" + 𝛾 D𝑉 𝑥"*$ is called TD target
• 𝛿" = 𝑅" + 𝛾K𝑉 𝑥"*$ − K𝑉 𝑥" is called TD error

!𝑉 𝑥# ← !𝑉 𝑥# + 𝛼 𝐺# − !𝑉 𝑥#

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝑅8 + 𝛾 !𝑉 𝑥MNO − !𝑉 𝑥M

TD methods combine:

1) the sampling of Monte Carlo
2) with the bootstrapping of DP
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Advantages and disadvantages of MC vs 
TD

• TD can learn before knowing the final outcome
• TD can learn online after every step
• MC must wait until the end of the episode

• TD can learn without the final outcome
• TD can learn from incomplete sequences
• MC can only learn from complete sequences
• TD works in continuing (non-terminating) environments
• MC only works in episodic (terminating) environments
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Bias-Variance Trade-off

• Return 𝐺" = 𝑅"*$ + 𝛾𝑅"*+ +⋯+ 𝛾,#$𝑅, is an unbiased estimate of 𝑉&(𝑥)
• In theory, the true TD target 𝑅" + 𝛾𝑉 𝑥"*$ is also an unbiased estimate of 𝑉&(𝑥)
• TD target 𝑅" + 𝛾 D𝑉 𝑥"*$ is a biased estimate of 𝑉&(𝑥)
• However, the TD target is much lower variance than the return 

• The return 𝐺" depends on a full sequence of random actions, transitions, rewards (i.e., evaluated at the end 
of the episode)

• The TD error only depends on one random action, transition, reward
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Monte-Carlo Backup

𝑥)

𝑢)

𝑥)*+ 𝑟)

Terminal state

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝐺8 − !𝑉 𝑥M
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Temporal-Difference Backup

𝑥)

𝑢)

𝑥)*+ 𝑟)

𝑢)

𝑥)*+𝑟)

!𝑉 𝑥M ← !𝑉 𝑥M + 𝛼 𝑅8 + 𝛾 !𝑉 𝑥MNO − !𝑉 𝑥M
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Dynamic Programming Backup
!𝑉 𝑥M ← 𝔼 𝑅M + 𝛾 !𝑉 𝑥MNO

𝑥)

5/1/2024 AA 203 | Lecture 10 26



Bootstrapping and sampling
• Sampling: define the update through samples to approximate expectations

• MC samples
• TD samples
• DP does not sample

• Bootstrapping: define the update through an estimate
• MC does not bootstrap
• TD bootstraps
• DP bootstraps
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A unifying view of RL
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From exact methods to model-free control

• Monte Carlo Learning
• Temporal-Difference (TD) Learning
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(Review) Generalized Policy Iteration
In previous lectures, we discussed Policy Iteration as consisting of two simultaneous, interactive processes: Policy 
Evaluation and Policy Improvement

We use the term generalized policy iteration (GPI) to refer to the general idea of letting policy-evaluation and policy 
improvement processes interact, independent of the granularity and other details of the two processes.

Policy Evaluation: Iterative policy evaluation
Policy Improvement: Greedy policy improvement
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GPI with Monte-Carlo Evaluation

Policy Evaluation: Monte-Carlo policy evaluation of 𝑉(𝑥)?

Policy Improvement: Greedy policy improvement?

Problem:

Greedy policy improvement over 𝑉(𝑥) requires a model of the 
MDP!

On the other hand, greedy policy improvement over 𝑄(𝑥, 𝑢)
does not

𝜋&'!(𝑥) = arg𝑚𝑎𝑥
(

𝑅(𝑥, 𝑢) + 𝛾 ∑
)!"#∈𝒳

𝑇 𝑥%'! ∣ 𝑥%, 𝑢% 𝑉&'! 𝑥%'!

𝜋&'!(𝑥) = arg𝑚𝑎𝑥
(
𝑄(𝑥, 𝑢)
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GPI with state-action value function

Policy Evaluation: Monte-Carlo policy evaluation of 𝑄(𝑥, 𝑢)

Policy Improvement: Greedy policy improvement?

Problem:

Exploration! Let’s consider an example:

• Need to choose among two possible doors:
• You open the left door: 𝑅 = 0, 𝑉(left) = 0
• You open the right door: 𝑅 = 1, 𝑉(right) = 1
• You open the right door: 𝑅 = 3,𝑉(right) = 2
• You open the right door: 𝑅 = 2,𝑉(right) = 2
• …

To estimate state-action values through samples, every 
state-action pair needs to be visited (opposed to each 
state as in MC estimation of 𝑉(𝑥))

Deterministic policies do not allow this exploration
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A simple (but effective) strategy: 𝜖-Greedy 
Exploration

π(u ∣ x) =
ϵ
m + 1 − ϵ  if u* = argmax

u∈𝒰
Q(x, u)

ϵ
m  otherwise 

• With probability 1 − 𝜖, choose the greedy action

• With probability 𝜖, choose a random action
• Ensures that all 𝑚	actions are tried with non-zero probability

Policy Evaluation: Monte-Carlo policy evaluation of 𝑄(𝑥, 𝑢)

Policy Improvement: 𝜖-Greedy policy improvement?
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Monte-Carlo Control

Policy Evaluation: Monte-Carlo policy evaluation of D𝑄(𝑥, 𝑢) ≈ 𝑄(𝑥, 𝑢)

Policy Improvement: 𝜖−Greedy policy improvement
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Example: Blackjack
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To recap…

We introduced core ideas such as Monte-Carlo and Temporal-Difference Learning and 
derived ways to solve unknown MDPs

However, we did not discuss methods to deal with high-dimensional state/action 
spaces… more on this later!

We discussed the main limitations of exact methods (such as Policy/Value Iteration):

• Update equations (i.e., Bellman equations) require access to dynamics model 𝑇 𝑥"*$ ∣ 𝑥", 𝑢"

• Iteration over (and storage of) all states and actions requires small, discrete state-action space

Sampling-based approximations

Function approximation
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A taxonomy of RL algorithms & important trade-offs
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A taxonomy of RL
RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics 𝑇(𝑥%'!|𝑥% , 𝑢%)do not use dynamics 𝑇(𝑥%'!|𝑥% , 𝑢%)

Given the model

𝑇(𝑥%'!|𝑥% , 𝑢%) is knowndirectly maximize the RL 
objective

𝔼,∼.$(,) ∑
%1#

2
𝛾%𝑟 𝑥%, 𝑢%

Estimate 𝑓3 ≈ 𝑇(𝑥%'!|𝑥%, 𝑢%)policy implicitly defined via
𝑉(𝑥) or 𝑄(𝑥, 𝑢)

𝜋 𝑥% = arg𝑚𝑎𝑥
&
𝑄 𝑥% , 𝑢%
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The skeleton of an RL algorithm 

𝜏 = (𝑥D, 𝑢D, … , 𝑥E, 𝑢E)

𝜋(𝑢#|𝑥#)

Generate samples

Fit a model / 
estimate return

Improve the policy

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)
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Why so many RL algorithms?
• Different tradeoffs:

• Sample efficiency
• Stability & easy of use

• Different assumptions:
• Stochastic or deterministic
• Continuous or discrete
• Episodic or infinite horizon

• Different things are easy or hard in different settings:
• Easier to represent the policy?
• Easier to represent the model?

5/1/2024 AA 203 | Lecture 10 40



Comparison: sample efficiency
• Sample efficiency = how many samples do we need to get a good policy?

• Crucial question: is the algorithm off policy?
• Off policy: able to improve the policy without generating new samples from the current policy
• On policy: each time the policy is changed, even a little bit, we need to generate new samples

Why even bother using less efficient algorithms? Wall-clock time is not the same as efficiency!
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Comparison: stability and ease of use
• Does it converge?
• And if it does, to what?
• Does it always converge?

• Supervised learning: almost always gradient descent
• Reinforcement learning: often not gradient descent

• Q-learning: fixed point iteration
• Model-based RL: model estimator is not optimized for expected reward
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Next time

• HJB, HJI, and reachability analysis
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