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Uncertain dynamical systems

Consider the discrete-time and continuous-time systems

xt+1 = f(t, xt, ut)
yt = h(t, xt, ut)

ẋ(t) = f(t, x(t), u(t))
y(t) = h(t, x(t), u(t))

where xt, x(t) ∈ Rn is the state, ut, u(t) ∈ Rm is the input, and yt, y(t) ∈ Rd is the measured
output.

We consider situations where at least one of f and h are, to some degree, unknown. Our goal
is to use data measurements to improve control performance over time.
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Handling uncertainty in dynamical systems

When uncertainties have only a small effect, feedback often ade-
quately compensates for model error, e.g.,

ẋ(t) = f(t, x(t), u(t)) + ε(t), where f is known and ε(t) is
zero-mean, finite variance, uncorrelated noise.
A quadrotor subject to small wind disturbances.

We can also try robust control approaches that consider average-
case or worst-case disturbances, e.g.,

ẋ(t) = f(t, x(t), u(t)) + w(t), where f is known and a set W
is known such that w(t) ∈ W.
A Harrier jump jet near hover during V/STOL.

The focus of this lecture is on observing state transitions to identify
patterns and improve control, e.g.,

ẋ(t) = f(t, x(t), u(t)), where f is wholly or partially unknown.
An F-16 aircraft in high-speed flight subject to aerodynamic
phenomena. 6



What can we learn?

We want to use measurements to improve control performance. Generally, there are two
paradigms with which to approach this task.

Use data to learn a better model, then use the model to improve the controller.
system identification
indirect adaptive control
model-based reinforcement learning

Use data to directly improve the controller.
direct adaptive control
model-free reinforcement learning
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Learning settings

In this course, we consider three settings describing how often we collect and learn from data.

Offline We have access to data that has been collected previously, which we learn from
prior to operation. This is a standard setting in system identification.

Online We want to incrementally improve or re-optimize our controller in response to a
stream of incoming data. This occurs in system identification, but it is more
prominent in adaptive control.

Episodic We interact with our environment in episodes, between which the system is
reset. Learning and controller optimization can happen between episodes. This
is a standard setting in reinforcement learning.

These are not exact categories – some overlap often occurs (e.g., train offline, fine-tune online).

This lecture will focus on online learning with linear-in-parameter models.
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Linear-in-parameter models

Consider the linear-in-parameter discrete-time model

yt = Aϕ(ut),

where y ∈ Rd is the output, u ∈ Rm is the input, A ∈ Rd×p is a matrix of constant, unknown
parameters, and ϕ : Rm → Rp is a known regressor function mapping inputs to features.

The input ut does not necessarily correspond to just the control input in a dynamical system.
For example, consider the LTI model

xt+1︸︷︷︸
=:“yt”

= Axt + But =
[
A B

]︸ ︷︷ ︸
=:“A”

[
xt

ut

]
︸︷︷︸

=:“ϕ(ut)”

,

where A and B are unknown. If we want to learn A and B, we can treat the current state and
control input together as our “input”, and measure the next state as our “output”.

10



Linear-in-parameter models

Consider the linear-in-parameter discrete-time model

yt = Aϕ(ut),

where y ∈ Rd is the output, u ∈ Rm is the input, A ∈ Rd×p is a matrix of constant, unknown
parameters, and ϕ : Rm → Rp is a known regressor function mapping inputs to features.

Given data {(ut, yt)}T −1
t=0 and with zt := ϕ(ut), we can estimate A as

Â ∈ arg min
A

T −1∑
t=0

∥yt − Azt∥2
2 = arg min

A
∥Y − AZ∥2

F.

where

Y :=
[
y0 y1 · · · yT −1

]
∈ Rm×T , Z :=

[
z0 z1 · · · zT −1

]
∈ Rp×T .

The stationarity condition for this optimization is the system of normal equations

ÂZZT = Y ZT.
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Linear-in-parameter models

Given data {(ut, yt)}T −1
t=0 and with zt := ϕ(ut), we can estimate A as

Â ∈ arg min
A

T −1∑
t=0

∥yt − Azt∥2
2 = arg min

A
∥Y − AZ∥2

F.

The stationarity condition for this optimization is the system of normal equations

ÂZZT = Y ZT,

where

ZZT =
[
z0 z1 · · · zT −1

]


zT
0

zT
1
...

zT
T −1

 =
T −1∑
t=0

ztz
T
t ⪰ 0.

If ZZT ≻ 0, then Â = Y ZT(ZZT)−1. A necessary and sufficient condition for this is that Z
has full row rank, i.e., rank Z = p. We need T ≥ p for this!
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Persistent excitation

A sequence z0:T −1 := {zt}T −1
t=0 ⊂ Rp is persistently exciting if

H1(z0:T −1) :=
[
z0 z1 · · · zT −1

]
∈ Rp×T

has full row rank, or equivalently that H1(z0:T −1)H1(z0:T −1)T ≻ 0.

Define the Hankel matrix of depth N ≤ T for u by

HN (z0:T −1) :=


z0 z1 · · · zT −N

z1 z2 · · · zT −N+1
...

...
. . .

...
zN−1 zN · · · zT −1

 ∈ RpN×(T −N+1)

Then z is persistently exciting of order N if rank HN (z0:T −1) = pN , or equivalently that
HN (z0:T −1)HN (z0:T −1)T ≻ 0.
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Willems’ fundamental lemma for LTI systems

Consider the discrete-time LTI system
xt+1 = Axt + But

yt = Cxt + Dut

with state xt ∈ Rn, input ut ∈ Rm, and output yt ∈ Rd.

Suppose (A, B) is controllable and we have measured a single input-output trajectory
{(ūt, ȳt)}T −1

t=0 , where ū0:T −1 is persistently exciting of order n + N .

Then {(ut, yt)}T −1
t=0 is an input-output trajectory as well if and only if there exists a vector

v ∈ RT −N+1 such that [
vec(u0:T −1)
vec(y0:T −1)

]
=
[
HN (ū0:T −1)
HN (ȳ0:T −1)

]
v

where vec(u0:T −1) ∈ RmT is the column vector formed from stacking {ut}T −1
t=0 in order.

This expresses all input-output trajectories in terms of a single persistently exciting trajectory.
This construction is model-free, since it does not explicitly form (A, B, C, D).
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Recursive least-squares estimation in discrete-time

Consider the linear-in-parameter discrete-time model

yt = Φ(ut)a

where y ∈ Rd is the output, u ∈ Rm is the input, a ∈ Rp is a vector of constant, unknown
parameters, and Φ : Rm → Rd×p is a known regressor function mapping inputs to features.

We can always re-write y = Aϕ(u) in this form, since

y = vec y = vec(Aϕ(u)) = (ϕ(u)T ⊗ Im)︸ ︷︷ ︸
=:Φ(u)

vec A︸ ︷︷ ︸
=:a

,

where ⊗ is the Kronecker product and we have used that vec(ABC) = (CT ⊗ A) vec B for any
conformable matrices A, B, C.
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Recursive least-squares estimation in discrete-time

Consider the linear-in-parameter discrete-time model
yt = Φ(ut)a

where yt ∈ Rd is the output, ut ∈ Rm is the input, a ∈ Rp is a vector of constant, unknown
parameters, and Φ : Rm → Rd×p is a known regressor function mapping inputs to features.

Suppose we measure {(ut, yt)}∞
t=0 online as a stream of incoming data. We initialize â0 and

P0 ≻ 0, and define the time-varying estimate

ât+1 = arg min
a

(
∥a − â0∥2

P −1
0

+
t∑

k=0
∥yk − Φ(uk)a∥2

2

)
where ∥a − â0∥2

P −1
0

:= (a − â)TP −1
0 (a − â0) acts as a regularizer.

The stationarity condition for this optimization is

P −1
0 (a − â0) +

t−1∑
k=0

Φ(uk)T(Φ(uk)ât+1 − yt) = 0
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Recursive least-squares estimation in discrete-time

Suppose we measure {(ut, yt)}∞
t=0 online as a stream of incoming data. We initialize â0 and

P0 ≻ 0, and define the time-varying estimate

ât+1 = arg min
a

(
∥a − â0∥2

P −1
0

+
t∑

k=0
∥yk − Φ(uk)a∥2

2,

)
where ∥a − â0∥2

P −1
0

:= (a − â)TP −1
0 (a − â0) acts as a regularizer.

The stationarity condition for this optimization is

P −1
0 (ât+1 − â0) +

t∑
k=0

Φ(uk)T(Φ(uk)ât+1 − yk) = 0.

Define P −1
t+1 := P −1

0 +
∑t

k=0 Φ(uk)TΦ(uk) and rearrange to get

P −1
t+1ât+1 = P −1

0 â0 +
t∑

k=0
Φ(uk)Tyk.
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Recursive least-squares estimation in discrete-time

Define P −1
t+1 := P −1

0 +
∑t

k=0 Φ(uk)TΦ(uk) and rearrange to get

P −1
t+1ât+1 = P −1

0 â0 +
t∑

k=0
Φ(uk)Tyk.

From P −1
t+1 = P −1

t + Φ(ut)TΦ(ut) and the Woodbury formula

(A + UBV )−1 = A−1 − A−1U(B−1 + V A−1U)−1
V A−1,

we have

Pt+1 = Pt − PtΦ(ut)T(I + Φ(ut)PtΦ(ut)T)−1︸ ︷︷ ︸
=:Kt

Φ(ut)Pt = (I − KtΦ(ut))Pt

where Kt is the Kalman gain.
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Recursive least-squares estimation in discrete-time

We have P −1
t+1ât+1 = P −1

0 â0 +
∑t

k=0 Φ(uk)Tyk and Pt+1 = (I − KtΦ(ut))Pt, so

ât+1 = Pt+1

(
P −1

0 â0 +
t∑

k=0
Φ(uk)Tyk

)

= (I − KtΦ(ut))Pt

(
Φ(ut)Tyt + P −1

0 â0 +
t−1∑
k=0

Φ(uk)Tyk

)
= (I − KtΦ(ut))

(
PtΦ(ut)Tyt + ât

)
Use the fact that Kt = (I − KtΦ(ut))PtΦ(ut)T to get ât+1 = ât + Kt(yt − Φ(ut)ât), so overall

Kt = PtΦ(ut)T(I + Φ(ut)PtΦ(ut)T)−1

ât+1 = ât + Kt(yt − Φ(ut)ât)
Pt+1 = (I − KtΦ(ut))Pt

with user-specified initial conditions â0 ∈ Rp and P0 ≻ 0.
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Recursive least-squares estimation in continuous-time

Consider the linear-in-parameter continuous-time model

y(t) = Φ(u(t))a,

where y(t) ∈ Rd is the output, u(t) ∈ Rm is the input, a ∈ Rp is a vector of constant, unknown
parameters, and Φ : Rm → Rd×p is a known regressor function mapping inputs to features.

We initialize â(0) ∈ Rp and P (0) ≻ 0, and set our estimate â(t) such that

â(t) = arg min
a

(
∥a − â(0)∥2

P (0)−1 +
∫ t

0
∥y(s) − Φ(u(s))a∥2

2 ds.

)

The stationarity condition for this optimization is

P (0)−1(â(t) − â(0)) +
∫ t

0
Φ(u(s))T(Φ(u(s))â(t) − y(s)) ds = 0.
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Recursive least-squares estimation in continuous-time

We initialize â(0) and set our estimate â(t) such that

â(t) = arg min
a

(
∥a − â(0)∥2

P (0)−1 +
∫ t

0
∥y(s) − Φ(u(s))a∥2

2 ds.

)
The stationarity condition for this optimization is

P (0)−1(â(t) − â(0)) +
∫ t

0
Φ(u(s))T(Φ(u(s))â(t) − y(s)) ds = 0.

Set d
dt (P (t)−1) = Φ(u(t))TΦ(u(t)) with initial condition P (0)−1 and rearrange to get

P (t)−1â(t) = P (0)−1
â(0) +

∫ t

0
Φ(u(s))Ty(s) ds.

Differentiate with respect to t and rearrange to get

˙̂a(t) = P (t)Φ(u(t))T(y(t) − Φ(u(t))â(t)).
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Recursive least-squares estimation in continuous-time

Overall, the parameter update law is

˙̂a(t) = P (t)Φ(u(t))T(y(t) − Φ(u(t))â(t))
d

dt
(P (t)−1) = Φ(u(t))TΦ(u(t))

with user-specified initial conditions â(0) ∈ Rp and P (0) ≻ 0.

Since P (t)P (t)−1 = I, we must have

d

dt

(
P (t)P (t)−1

)
= Ṗ (t)P (t)−1 + P (t) d

dt
(P (t)−1) = 0 =⇒ Ṗ (t) = −P (t) d

dt
(P (t)−1)P (t).

So we can use the more convenient update

˙̂a(t) = P (t)Φ(u(t))T(y(t) − Φ(u(t))â(t))
Ṗ (t) = −P (t)Φ(u(t))TΦ(u(t))P (t)

with user-specified initial conditions â(0) ∈ Rp and P (0) ≻ 0.
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Adaptive control

So far, we have looked at recursive estimators that, for persistently excited linear-in-parameter
systems, ensure estimated parameter values converge to those of the true system.

Suppose we knew a controller u(t) = π(t, x(t), a) that could stabilize the system

ẋ(t) = Φ(t, x(t), u(t))a,

e.g., ensure limt→∞ x(t) = 0 for all x(0).

If we do not know a, we could simultaneously update an estimate â(t) to minimize model error
while applying the controller u(t) = π(t, x(t), â(t)). This is sometimes referred to as model
identification adaptive control (MIAC).

However, even if limt→∞ â(t) = a, there is no guarantee that u(t) = π(t, x(t), â(t)) will
stabilize the system, since intermediate values of â(t) can be arbitrarily poor estimates of a.

Adaptive control focuses on stable concurrent learning and control, such that adaptation of â(t)
over time alongside feedback u(t) = π(t, x(t), â(t)) is still guaranteed to stabilize the system.
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Certainty-equivalent adaptive control with matched uncertainty

Let ẋ = f(x) + B(x)(u + Φ(x)a), where a ∈ Rp is a vector of unknown parameters.

Suppose we know a radially unbounded, positive-definite function V̄ : Rn → R and a controller
u = π̄(x) such that

∇V (x)T(f(x) + B(x)π̄(x)) ≤ −ρ(x)
for some positive-definite ρ : Rn → R. That is, u = π̄(x) would stabilize the system if a = 0,
which we could prove with ˙̄x = f(x̄) + B(x̄)π̄(x̄) and Lyapunov function V̄ .

For the uncertain system, we propose the controller

u = π̄(x) − Φ(x)â(t),

with parameter estimate â(t). If â(t) = a, then the second term of this controller would cancel
out Φ(x)a and leave us with the stable nominal dynamics.

For this reason, the uncertain term Φ(x)a is referred to as a matched uncertainty. The concept
of using a fixed estimate Φ(x)â(t) in feedback on the true system as if its “correct” is referred
to as certainty equivalent control.
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Certainty-equivalent adaptive control with matched uncertainty

How do we update â(t) over time such that the certainty-equivalent controller
u = π̄(x) − Φ(x)â(t) stabilizes ẋ = f(x) + B(x)(u + Φ(x)a)?

Consider the augmented Lyapunov candidate function

V (x, â) := V̄ (x) + 1
2∥â − a∥2

Γ−1 ,

for some adaptation gain Γ ≻ 0. Then for u = π̄(x) − Φ(x)â we have

V̇ (x, â) = ∇V̄ (x)T(f(x) + B(x)(π̄(x) − Φ(x)(â − a))) + (â − a)TΓ−1 ˙̂a
= ∇V̄ (x)T(f(x) + B(x)π̄(x)) − ∇V̄ (x)TB(x)Φ(x)(â − a) + (â − a)TΓ−1 ˙̂a
= ∇V̄ (x)T(f(x) + B(x)π̄(x))︸ ︷︷ ︸

≤−ρ(x)

−(â − a)T(Φ(x)TB(x)T ∇V̄ (x) − Γ−1 ˙̂a
)

If we choose the adaptation law
˙̂a = ΓΦ(x)TB(x)T ∇V̄ (x),

then V̇ (x, â) is a Lyapunov function for the closed-loop system with controller
u = π̄(x) − Φ(x)â, which ensures limt→∞ x(t) = 0. 27



Certainty-equivalent adaptive control with matched uncertainty

If we choose the adaptation law
˙̂a = ΓΦ(x)TB(x)T ∇V̄ (x),

then V̇ (x, â) is a Lyapunov function for the closed-loop system with controller
u = π̄(x) − Φ(x)â, which ensures limt→∞ x(t) = 0.

In fact, this choice of adaptation law ensures

d

dt
V (x, â)

∣∣∣∣
ẋ=f(x)+B(x)(π̄(x)−Φ(x)(â−a))

= d

dt
V̄ (x)

∣∣∣∣
ẋ=f(x)+B(x)π̄(x)

,

i.e., the Lyapunov “energy” of the adaptive system evolves in the same manner as in the
nominal dynamics, so any stability analysis “carries over” to the adaptive system.

Overall, we achieved closed-loop stability, without any guarantees on how well â(t) estimates a!

Adaptive control learns on a “need-to-know” basis to cancel Φ(x)a in closed-loop, rather than
to estimate a in open-loop (Slotine and Li, 1991; Richards et al., 2021, 2023).
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29



References

S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone. Adaptive-control-oriented meta-learning for
nonlinear systems. In Robotics: Science and Systems, 2021. URL
https://arxiv.org/abs/2204.06716.

S. M. Richards, N. Azizan, J.-J. Slotine, and M. Pavone. Control-oriented meta-learning. Int. Journal
of Robotics Research, 2023. URL https://arxiv.org/abs/2103.04490. In press.

J.-J. E. Slotine and W. Li. Applied Nonlinear Control. 1991.

30

https://arxiv.org/abs/2204.06716
https://arxiv.org/abs/2103.04490

	Learning objectives and settings
	Linear-in-parameter models, persistent excitation, and Willems' fundamental lemma
	Recursive least-squares algorithms
	Adaptive control
	References

