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Review: Principle of optimality and dynamic programming

Consider the discrete-time OCP

minimize
{ut}T −1

t=0

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

Define the tail sub-problem cost-to-go

J(t, x, {ut}T −1
k=t ) := ℓT (xT ) +

T −1∑
k=t

ℓ(k, xk, uk)

where xk+1 = f(k, xk, uk) with initial condition xt = x is assumed implicitly.

Define the value function at t ∈ {0, 1, . . . , T} and xt ∈ Rn by
V (t, xt) := inf

{uk}T −1
k=t

⊆U
J(t, xt, {uk}T −1

k=t ), V (T, xT ) = ℓT (xT ).

Previously we used “J∗
t (xt)”, but this notation will translate better to continuous-time later.
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Review: Principle of optimality and dynamic programming

Suppose {u∗
t }T −1

t=0 ⊆ U is globally optimal for this OCP, i.e.,

J(0, x0, {u∗
t }T −1

t=0 ) = V (0, x0).

Then the truncation {u∗
k}T −1

k=t is globally optimal for the corresponding tail sub-problem, i.e.,

J(t, xt, {u∗
k}T −1

k=t ) = V (t, xt).

From this, we must have the Bellman equation

V (t, x) = inf
u∈U

(
ℓ(t, x, u) + V (t + 1, f(t, x, u))

)
with the boundary condition V (T, x) = ℓT (x), for all t ∈ {0, 1, . . . , T − 1} and x ∈ Rn.

So the Bellman equation above is a necessary condition for global optimality of {u∗
t }T −1

t=0 .
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The Bellman equation as a sufficient optimality condition

Suppose V̂ : {0, 1, . . . , T} × Rn → R is a function that satisfies the Bellman equation

V̂ (t, x) = inf
u∈U

(
ℓ(t, x, u) + V̂ (t + 1, f(t, x, u))

)
, V̂ (T, x) = ℓT (x),

for all t ∈ {0, 1, . . . , T − 1} and x ∈ Rn.

Suppose (x̂, û) satisfy x̂t+1 = f(t, x̂t, ût) with initial condition x̂0 and

ℓ(t, x̂t, ût) + V̂ (t + 1, f(t, x̂t, ût)) = inf
u∈U

(
ℓ(t, x̂t, u) + V̂ (t + 1, f(t, x̂t, u))

)
,

for all t ∈ {0, 1, . . . , T − 1}.

Then we can write
V̂ (t, x̂t) − V̂ (t + 1, f(t, x̂t, ût)) = ℓ(t, x̂t, ût).
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The Bellman equation as a sufficient optimality condition

Then we can write

V̂ (t, x̂t) − V̂ (t + 1, f(t, x̂t, ût)) = ℓ(t, x̂t, ût)
V̂ (t, x̂t) − V̂ (t + 1, x̂t+1) = ℓ(t, x̂t, ût)

T −1∑
t=0

(
V̂ (t, x̂t) − V̂ (t + 1, x̂t+1)

)
=

T −1∑
t=0

ℓ(t, x̂t, ût)

V̂ (0, x̂0) − V̂ (T, x̂T ) =
T −1∑
t=0

ℓ(t, x̂t, ût)

=⇒ V̂ (0, x̂0) = ℓT (x̂T ) +
T −1∑
t=0

ℓ(t, x̂t, ût)

= J(0, x̂0, {ût}T −1
t=0 )

So V̂ (0, x̂0) is the cost-to-go for {ût}T −1
t=0 .
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The Bellman equation as a sufficient optimality condition

Now consider any other (x, u) satisfying xt+1 = f(t, xt, ut) and x0 = x̂0. Then

V̂ (t, xt) = inf
u∈U

(
ℓ(t, xt, u) + V̂ (t + 1, f(t, xt, u))

)
≤ ℓ(t, xt, ut) + V̂ (t + 1, f(t, xt, ut))

A similar summation argument gives us

V̂ (0, x0) ≤ J(0, x0, {ut}T −1
t=0 ).

Since x0 = x̂0, we have
V̂ (0, x̂0) ≤ J(0, x̂0, {ut}T −1

t=0 ).

Overall, û yields the cost V̂ (0, x̂0) and no other admissible u can produce a smaller cost.

While we chose t = 0 as the initial time, this was arbitrary since the Bellman equation is
assumed to hold for all t ∈ {0, 1, . . . , T} and x ∈ Rn. So V̂ (t, x) is the optimal cost-to-go, i.e.,
V̂ (t, x) = V (t, x) for all t ∈ {0, 1, . . . , T} and x ∈ Rn, and û is a globally optimal control.
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Continuous-time dynamic programming

Consider the continuous-time OCP

minimize
u

ℓT (x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ]
u(t) ∈ U , ∀t ∈ [0, T ]

Define the tail sub-problem cost-to-go

J(t, x, u[t,T ]) := ℓT (x(T )) +
∫ T

t

ℓ(s, x(s), u(s)) ds

where ẋ(s) = f(s, x(s), u(s)) with initial condition x(t) = x is assumed implicitly.

Define the value function at t ∈ [0, T ] and x(t) ∈ Rn by

V (t, x(t)) := inf
u[0,T ]⊆U

J(t, x(t), u[0,T ]), V (T, x(T )) = ℓT (x(T )).
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Continuous-time dynamic programming

Suppose u∗ : [0, T ] → U is globally optimal for this OCP, i.e.,

J(0, x(0), u∗
[0,T ]) = V (0, x(0)).

Then the truncation u∗
[t,T ] : [0, T ] → U is globally optimal for the corresponding tail

sub-problem, i.e.,
J(t, x(t), u∗

[t,T ]) = V (t, x(t)).

From this, we must have the Bellman equation

V (t, x) = inf
u[t,t+ε]∈U

(∫ t+ε

t

ℓ(s, x(s), u(s)) ds + V (t + ε, x(t + ε))
)

with the boundary condition V (T, x) = ℓT (x), for all t ∈ [0, T ), ε ∈ (0, T − t], and x ∈ Rn,
where x(s) for s ∈ [t, t + ε] is the state trajectory corresponding to u[t,t+ε] with initial
condition x(t) = x.

That is, the Bellman equation above is a necessary condition for global optimality of u∗.
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Continuous-time dynamic programming

From this, we must have the Bellman equation

V (t, x) = inf
u[t,t+ε]∈U

(∫ t+ε

t

ℓ(s, x(s), u(s)) ds + V (t + ε, x(t + ε))
)

with the boundary condition V (T, x) = ℓT (x), for all t ∈ [0, T ), ε ∈ (0, T − t], and x ∈ Rn,
where x(s) for s ∈ [t, t + ε] is the state trajectory corresponding to u[t,t+ε] with initial
condition x(t) = x.

Assume V is C1-smooth with respect to t and x. Then

V (t + ε, x(t + ε)) = V (t, x) + ∂V

∂t
(t, x)ε + ∇x V (t, x)Tf(t, x, u(t))ε + o(ε)

and ∫ t+ε

t

ℓ(s, x(s), u(s)) ds = ℓ(t, x, u(t))ε + o(ε),

where limε→0
o(ε)

ε = 0.
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The Hamilton-Jacobi-Bellman equation

Assume V is C1-smooth with respect to t and x. Then

V (t + ε, x(t + ε)) = V (t, x) + ∂V

∂t
(t, x)ε + ∇x V (t, x)Tf(t, x, u(t))ε + o(ε)

and ∫ t+ε

t

ℓ(s, x(s), u(s)) ds = ℓ(t, x, u(t))ε + o(ε),

where “o(ε)” is little-o notation encapsulating terms that satisfy limε→0
o(ε)

ε = 0.

Substitute these into the Bellman equation to get

−∂V

∂t
(t, x)ε = inf

u[t,t+ε]∈U

(
ℓ(t, x, u(t))ε + ∇x V (t, x)Tf(t, x, u(t))ε + o(ε)

)
Divide by ε and take the limit as ε → 0 to get the Hamilton-Jacobi-Bellman (HJB) equation

−∂V

∂t
(t, x) = inf

u∈U

(
ℓ(t, x, u) + ∇x V (t, x)Tf(t, x, u)

)
with boundary condition V (T, x) = ℓT (x), for all t ∈ [0, T ) and x ∈ Rn.
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The Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation is

−∂V

∂t
(t, x) = inf

u∈U

(
ℓ(t, x, u) + ∇x V (t, x)Tf(t, x, u)

)
with boundary condition V (T, x) = ℓT (x), for all t ∈ [0, T ) and x ∈ Rn.

If we assume a globally optimal control exists, then we can replace “inf” with “min” above,
and the HJB equation is a necessary condition for global optimality of u∗ : [0, T ] → U . A
similar derivation to the discrete-time case can show that the HJB equation can be used to
form sufficient optimality conditions.

Define the Hamiltonian
H(t, x, u, p) := pTf(t, x, u) − ℓ(t, x, u).

Then we can rewrite the HJB equation as
∂V

∂t
(t, x) = sup

u∈U
H(t, x, u, − ∇x V (t, x)).

14



HJB versus PMP

The Hamilton-Jacobi-Bellman (HJB) equation is
∂V

∂t
(t, x) = sup

u∈U
H(t, x, u, − ∇x V (t, x))

)
with boundary condition V (T, x) = ℓT (x), for all t ∈ [0, T ) and x ∈ Rn.

In the PMP, we saw that an optimal control u∗ must satisfy
u∗(t) = arg max

u∈U
H(t, x∗(t), u, p∗(t)), ∀t ∈ [0, T ].

This is an open-loop specification, since u∗ depends on the state and co-state trajectories,
which come from solving a BVP over the entire interval [0, T ].

With the HJB, we have that
u∗(t) = arg max

u∈U
H(t, x∗(t), u, − ∇x V (t, x∗(t))), ∀t ∈ [0, T ].

This is a closed-loop specification, since if we know V (t, x) everywhere, then u∗(t) is
completely determined by x∗(t).
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HJB versus PMP

In the PMP, we saw that an optimal control u∗ must satisfy
u∗(t) = arg max

u∈U
H(t, x∗(t), u, p∗(t)), ∀t ∈ [0, T ].

This is an open-loop specification, since u∗ depends on the state and co-state trajectories,
which come from solving a BVP over the entire interval [0, T ].

With the HJB, we have that
u∗(t) = arg max

u∈U
H(t, x∗(t), u, − ∇x V (t, x∗(t))), ∀t ∈ [0, T ].

This is a closed-loop specification, since if we know V (t, x) everywhere, then u∗(t) is
completely determined by x∗(t). However, computing V (t, x) everywhere is much harder to do;
it is the solution of a PDE, while the PMP required us to solve a system of ODEs.

Comparing the PMP and the HJB also gives us a new interpretation of the adjoint state as a
sensitivity

p∗(t) = − ∇x V (t, x∗(t)).
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LQR control in continuous-time

Consider the continuous-time OCP

minimize
u

1
2x(t)TQT x(t) + 1

2

∫ T

0

(
x(t)TQ(t)x(t) + u(t)TR(t)u(t)

)
dt

subject to ẋ(t) = A(t)x(t) + B(t)u(t), ∀t ∈ [0, T ]

where QT ⪰ 0, Q(t) ⪰ 0, and R(t) ≻ 0 for all t ∈ [0, T ].

The HJB equation for this problem is

−∂V

∂t
(t, x) = inf

u∈Rm

(
1
2xTQ(t)x + 1

2uTR(t)u + ∇x V (t, x)T(A(t)x + B(t)u)
)

with boundary condition V (T, x) = 1
2 xTQT x.

Take the derivative with respect to u and set it equal to zero to get

u = −R(t)−1
B(t)T ∇x V (t, x)
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LQR control in continuous-time

The HJB equation for this problem is

−∂V

∂t
(t, x) = inf

u∈Rm

(
1
2xTQ(t)x + 1

2uTR(t)u + ∇x V (t, x)T(A(t)x + B(t)u)
)

with boundary condition V (T, x) = 1
2 xTQT x.

Take the derivative with respect to u and set it equal to zero to get

u = −R(t)−1
B(t)T ∇x V (t, x)

Substitute this back into the HJB equation and rearrange to get

∂V

∂t
(t, x) = 1

2 ∇x V (t, x)TB(t)R(t)−1
B(t)T ∇x V (t, x) − xTA(t)T ∇x V (t, x) − 1

2xTQ(t)x,

which must hold for all (t, x) with boundary condition V (T, x) = 1
2 xTQT x.
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LQR control in continuous-time

Substitute this back into the HJB equation and rearrange to get
∂V

∂t
(t, x) = 1

2 ∇x V (t, x)TB(t)R(t)−1
B(t)T ∇x V (t, x) − xTA(t)T ∇x V (t, x) − 1

2xTQ(t)x,

which must hold for all (t, x) with boundary condition V (T, x) = 1
2 xTQT x.

Based on the boundary condition, let us make the ansatz V (t, x) = 1
2 xTP (t)x, where P (t) is

symmetric positive-definite. Then the HJB equation becomes
1
2xṖ (t)x = 1

2xTP (t)B(t)R(t)−1
B(t)TP (t)x − xTA(t)TP (t)x − 1

2xTQ(t)x

= 1
2xT

(
P (t)B(t)R(t)−1

B(t)TP (t) − P (t)A(t) − A(t)TP (t) − Q(t)
)

x

This must hold for all (t, x), so P (t) must satisfy the continuous-time Riccati equation

Ṗ (t) = P (t)B(t)R(t)−1
B(t)TP (t) − P (t)A(t) − A(t)TP (t) − Q(t),

which is an ODE that can be solved backwards in time from P (T ) = QT .
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LQR control in continuous-time

The value function is V (t, x) = 1
2 xTP (t)x, where P (t) ≻ 0 must satisfy the continuous-time

Riccati equation

Ṗ (t) = P (t)B(t)R(t)−1
B(t)TP (t) − P (t)A(t) − A(t)TP (t) − Q(t),

which is an ODE that can be solved backwards in time from P (T ) = QT .

The optimal control is
u∗ = −R(t)−1

B(t)T ∇x V (t, x) = −R(t)−1
B(t)TP (t)︸ ︷︷ ︸

=:K(t)

x,

which is a linear feedback policy.

Recall that in the discrete-time case we had to solve the discrete-time Riccati equation

Pt = Qt + AT
t Pt+1At − AT

t Pt+1Bt(Rt + BT
t Pt+1Bt)

−1
BT

t Pt+1At

recursively from the boundary condition PT = QT . The optimal control input in this case was
u∗ = Ktx with Kt := −(Rt + BT

t Pt+1Bt)
−1

BT
t Pt+1At.
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Non-smooth value functions

Recall that in deriving the HJB equation we assumed that V (t, x) is C1-smooth with respect to
t and x. However, this is often not true, particularly for problems with bounded control and a
terminal cost.

As an example, consider the scalar problem

minimize
u

x(T )

subject to ẋ(t) = x(t)u(t), ∀t ∈ [0, T ]
u(t) ∈ [−1, 1], ∀t ∈ [0, T ]

By inspection,

u∗ =


1, x < 0
?, x = 0
−1, x > 0

=⇒ ẋ∗ =


x, x < 0
0, x = 0
−x, x > 0

=⇒ x∗(t) =


et−t0x0, x0 < 0
0, x0 = 0
e−(t−t0)x0, x0 > 0
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Non-smooth value functions

As an example, consider the scalar problem
minimize

u
x(T )

subject to ẋ(t) = x(t)u(t), ∀t ∈ [0, T ]
u(t) ∈ [−1, 1], ∀t ∈ [0, T ]

The value function is

V (t, x) =


eT −tx, x < 0
0, x = 0
e−(T −t)x, x > 0

,

which is not C1-smooth, but it does satisfy the HJB equation

−∂V

∂t
(t, x) = inf

u∈[−1,1]
∇x V (t, x)xu = −|∇x V (t, x)x|

away from x = 0, with boundary condition V (T, x) = x. V (t, x) for fixed t.
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Non-smooth value functions

It turns out that the HJB equation

−∂V

∂t
(t, x) = inf

u∈U

(
ℓ(t, x, u) + ∇x V (t, x)Tf(t, x, u)

)
with boundary condition V (T, x) = ℓT (x) can have non-smooth solutions. However, we must
reinterpret what we mean by a solution.

We say V is a viscosity solution to the HJB if for each (t, x) we have

−∂φ

∂t
(t, x) − inf

u∈U

(
ℓ(t, x, u) + ∇x φ(t, x)Tf(t, x, u)

)
≤ 0

−
∂φ

∂t
(t, x) − inf

u∈U

(
ℓ(t, x, u) + ∇x φ(t, x)Tf(t, x, u)

)
≥ 0

for all C1-smooth test functions ϕ and ϕ such that φ − V has a local minimum at (t, x) and
φ − V has a local maximum at (t, x). More details can be found in (Liberzon, 2012, §5.3).

With appropriate technical assumptions on f , ℓ, ℓT , and U , the value function V is the unique
viscosity solution of the HJB equation and it is locally Lipschitz.
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System identification and adaptive control
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