
AA 203
Optimal and Learning-Based Control

LQR-based methods

Spencer M. Richards

Autonomous Systems Laboratory, Stanford University

April 24, 2023
(last updated May 3, 2023)

1

Course overview

2

Agenda

1. LQR feedback for linear systems with quadratic costs

2. Linear and nonlinear tracking LQR

3. iLQR and DDP for trajectory optimization

3

Agenda

1. LQR feedback for linear systems with quadratic costs

2. Linear and nonlinear tracking LQR

3. iLQR and DDP for trajectory optimization

4

Review: LQR feedback for linear systems with quadratic costs

Consider the discrete-time OCP

minimize
u

1
2xT

T QT xT +
T −1∑
t=0

(
1
2xT

t Qtxt + 1
2uT

t Rtut + xT
t Stut

)
subject to xt+1 = Atxt + Btut, ∀t ∈ {0, 1, . . . , T − 1}

which is parameterized by the initial state x0 and minimized over the control inputs u alone,
for QT ⪰ 0, Qt ⪰ 0, and Rt ≻ 0.

We solved this recursively via dynamic programming, during which we encountered the Bellman
optimality equation

J∗
t (xt) = min

ut

1
2

(
xt

ut

)T [
Qt St

ST
t Rt

] (
xt

ut

)
+ (Atxt + Btut)TPt+1(Atxt + Btut)︸ ︷︷ ︸

=J∗
t+1(xt+1)


︸ ︷︷ ︸

state-action value function Q∗(xt, ut)

5

Review: LQR feedback for linear systems with quadratic costs

Consider the discrete-time OCP

minimize
u

J0(x0) := 1
2xT

T QT xT +
T −1∑
t=0

(
1
2xT

t Qtxt + 1
2uT

t Rtut + xT
t Stut

)
subject to xt+1 = Atxt + Btut, ∀t ∈ {0, 1, . . . , T − 1}

which is parameterized by x0 ∈ Rn, QT ⪰ 0, Qt ⪰ 0, and Rt ≻ 0.

The optimal control u∗ = π∗(t, x) = Ktx is closed-loop and linear. It can be computed offline
via the backwards Riccati recursion

PT := QT

Kt = −(Rt + BT
t Pt+1Bt)

−1(BT
t Pt+1At + ST

t)

Pt = Qt + AT
t Pt+1At − (AT

t Pt+1Bt + St)(Rt + BT
t Pt+1Bt)

−1(BT
t Pt+1At + ST

t)
= Qt + AT

t Pt+1(At + BtKt) + StKt

6

LQR feedback for affine systems with quadratic and linear costs

Consider the discrete-time LQR problem with QT ⪰ 0, Qt ⪰ 0, Rt ≻ 0, and now

ℓT (xT) = 1
2xT

T QT xT + qT
T xT + αT

ℓt(xt, ut) = 1
2xT

t Qtxt + 1
2uT

t Rtut + xT
t Stut + qT

t xt + rT
t ut + αt, ∀t ∈ {0, 1, . . . , T − 1}

f(t, xt, ut) = Atxt + Btut + ct, ∀t ∈ {0, 1, . . . , T − 1}

Define the 0th-, 1st-, and 2nd-order terms

ηt := αt + βt+1 + pT
t+1ct + 1

2cT
t Pt+1ct

hx,t := qt + AT
t (pt+1 + Pt+1ct)

hu,t := rt + BT
t (pt+1 + Pt+1ct)

Hxx,t := Qt + AT
t Pt+1At

Huu,t := Rt + BT
t Pt+1Bt

Hxu,t := St + AT
t Pt+1Bt

7

LQR feedback for affine systems with quadratic and linear costs

Define the 0th-, 1st-, and 2nd-order terms

ηt := αt + βt+1 + pT
t+1ct + 1

2cT
t Pt+1ct

hx,t := qt + AT
t (pt+1 + Pt+1ct)

hu,t := rt + BT
t (pt+1 + Pt+1ct)

Hxx,t := Qt + AT
t Pt+1At

Huu,t := Rt + BT
t Pt+1Bt

Hxu,t := St + AT
t Pt+1Bt

The optimal control u∗ = π∗(t, x) = Ktx + kt is closed-loop and affine, and given by

PT := QT

pT := qT

βT := αT

Kt = −H−1
uu,tH

T
xu,t

kt = −H−1
uu,thu,t

Pt = Hxx,t + Hxu,tKt

pt = hx,t + Hxu,tkt

βt = ηt + 1
2hT

u,tkt

with cost-to-go J∗
t (xt) = 1

2 xT
t Ptxt + pT

t xt + βt.

8

Agenda

1. LQR feedback for linear systems with quadratic costs

2. Linear and nonlinear tracking LQR

3. iLQR and DDP for trajectory optimization

9

Tracking LQR for affine systems

Suppose we know a nominal trajectory (x̄, ū) with affine dynamics, i.e.,

x̄t+1 = Atx̄t + Btūt + ct, ∀t ∈ {0, 1, . . . , T − 1}.

Define the errors x̃t := xt − x̄t and ũt := ut − ūt. Then the error dynamics are given by

x̃t+1 = Atx̃t + Btũt.

If we want to track (x̄, ū), we can use the quadratic cost function

J0(x̃0) = 1
2 x̃T

T QT x̃T +
T −1∑
t=0

(
1
2 x̃T

t Qtx̃t + 1
2 ũT

t Rtũt

)
with QT ⪰ 0, Qt ⪰ 0, and Rt ≻ 0 to penalize deviations of (x, u) from (x̄, ū).

Standard LQR for this problem gives us an optimal policy such that ũ∗
t = Ktx̃t, so

u∗
t = π∗(t, xt, x̄t, ūt) = ūt + Kt(xt − x̄t).

10

Tracking LQR for nonlinear systems

Suppose we know a nominal trajectory (x̄, ū) with nonlinear dynamics, i.e.,

x̄t+1 = f(t, x̄t, ūt), ∀t ∈ {0, 1, . . . , T − 1}.

Then the error dynamics are approximately given by

xt+1 ≈ f(t, x̄t, ūt) + ∂f

∂x
(t, x̄t, ūt)(xt − x̄t) + ∂f

∂u
(t, x̄t, ūt)(ut − ūt)

x̃t+1 ≈
∂f

∂x
(t, x̄t, ūt)︸ ︷︷ ︸
=:At

x̃t + ∂f

∂u
(t, x̄t, ūt)︸ ︷︷ ︸
=:Bt

ũt

If we remain “close” to (x̄, ū), then we can use standard LQR with the quadratic cost function
from the previous slide to compute a locally optimal policy
u∗

t = π∗(t, xt, x̄t, ūt) = ūt + Kt(xt − x̄t).

11

Agenda

1. LQR feedback for linear systems with quadratic costs

2. Linear and nonlinear tracking LQR

3. iLQR and DDP for trajectory optimization

12

LQR-based methods for solving unconstrained nonlinear OCPs

Consider the discrete-time OCP

minimize
x̄,ū

J(x̄, ū) := ℓT (x̄T) +
T −1∑
t=0

ℓ(t, x̄t, ūt)

subject to x̄t+1 = f(t, x̄t, ūt), ∀t ∈ {0, 1, . . . , T − 1}
x̄0 = x0

We can use LQR to approximately solve this problem for an open-loop trajectory (x̄, ū) and a
locally optimal policy u∗

t = π∗
t (t, xt, x̄t, ūt) = ūt + Kt(xt − x̄t) simultaneously!

Specifically, we will consider two iterative methods:
iterative LQR (iLQR) Approximate the cost and dynamics as quadratic and affine, respectively,

then solve the optimal Bellman equation recursively.
differential dynamic programming (DDP) Approximate the value function and Bellman

equation as quadratic, then solve the optimal Bellman equation recursively.

13

Iterative LQR (iLQR)

In iterative LQR (iLQR), we approximate the cost and dynamics as quadratic and affine,
respectively, then exactly solve the resulting LQR problem.

We initialize ū and start with a “rollout” of the nonlinear dynamics x̄t+1 = f(t, x̄t, ūt) to
compute x̄ and J(x̄, ū). Then we approximate the dynamics and cost as

x̃t+1 ≈
∂f

∂x
(t, x̄t, ūt)︸ ︷︷ ︸
=:At

x̃t + ∂f

∂u
(t, x̄t, ūt)︸ ︷︷ ︸
=:Bt

ũt + 0︸︷︷︸
=:ct

ℓT (xT) ≈ ℓT (x̄T)︸ ︷︷ ︸
=:αT

+∇ℓT (x̄T)︸ ︷︷ ︸
=:qT

T
x̃T + 1

2 x̃T ∇2ℓT (x̄T)︸ ︷︷ ︸
=:QT

x̃T

ℓt(t, xt, ut) ≈ ℓt(t, x̄t, ūt)︸ ︷︷ ︸
=:αt

+∇x ℓ(t, x̄t, ūt)︸ ︷︷ ︸
=:qt

T
x̃t +∇u ℓ(t, x̄t, ūt)︸ ︷︷ ︸

=:rt

T
ũt

+ 1
2 x̃T

t ∇2
xxℓt(t, x̄t, ūt)︸ ︷︷ ︸

=:Qt

x̃t + 1
2 ũT

t ∇2
uuℓt(t, x̄t, ūt)︸ ︷︷ ︸

=:Rt

ũt + x̃T
t ∇2

xuℓt(t, x̄t, ūt)︸ ︷︷ ︸
=:St

ũt

14

Iterative LQR (iLQR)

Now we solve the general LQR problem

minimize
u

1
2 x̃T

T QT x̃T + qT
T x̃T +

T −1∑
t=0

(
1
2 x̃T

t Qtx̃t + 1
2 ũT

t Rtũt + x̃T
t Stũt + qT

t x̃t + rT
t ũt

)
subject to x̃t+1 = Atx̃t + Btũt, ∀t ∈ {0, 1, . . . , T − 1}

via dynamic programming for feedback gains {Kt}T −1
t=0 and offsets {kt}T −1

t=0 .

Then we update the nominal control trajectory via ūt ← ūt + ũt, where ũt = Ktx̃t + kt.

We repeat this whole process iteratively until convergence (e.g., change in ũ or J(x̄, ū)
between iterations is small).

15

Differential dynamic programming (DDP)

The exact Bellman equation for our problem is

J∗
t (xt) = min

ut

(
ℓ(t, xt, ut) + J∗

t+1(f(t, xt, ut))
)

In iLQR, we approximate the cost and dynamics as quadratic and affine, respectively. The
right-hand-side is then approximately quadratic, so we can minimize it to find ũ∗

t .

In differential dynamic programming (DDP), we set J∗
t (xt) = 1

2 xT
t Ptxt + pT

t xt + βt and
approximate the right-hand-side of the Bellman equation by quadratizing it directly.

Minimizing this approximation recursively for ũ∗
t is equivalent to iLQR, except the 2nd-order

terms are now
Hxx,t := Qt + AT

t Pt+1At +
∑n

i=1 pt+1,i∇2
xxfi(t, x̄t, ūt)

Huu,t := Rt + BT
t Pt+1Bt +

∑n
i=1 pt+1,i∇2

uufi(t, x̄t, ūt)
Hxu,t := St + AT

t Pt+1Bt +
∑n

i=1 pt+1,i∇2
xufi(t, x̄t, ūt)

Overall, DDP estimates the Bellman equation more accurately than iLQR, but requires
computing 2nd-order derivatives of the dynamics. Practically, iLQR is usually sufficient.

16

iLQR and DDP

Input: initial state x0 ∈ Rn, convergence tolerance ε > 0, maximum iterations N ∈ N>0

initialize nominal control sequence ū = {ūt}T −1
t=0 , initial cost change J̃ =∞.

Rollout x̄t+1 = f(t, x̄t, ūt) to get x̄ = {x̄t}T
t=0 and J(x̄, ū).

for i = 1, 2, . . . , N

Backward pass:
Compute the approximating terms {ηt, hx,t, hu,t, Hxx,t, Huu,t, Hxu,t}T −1

t=0 .
Recursively compute {βt, pt, Pt}T

t=0 and {kt, Kt}T −1
t=0 .

Forward pass:
Rollout x̃t+1 = f(t, x̄t + x̃t, ūt + ũt)− x̄t+1 with ũt = kt + Ktx̃t.
Update (x̄, ū)← (x̄ + x̃, ū + ũ) and J̃ ← J(x̄ + x̃, ū + ũ)− J(x̄, ū).

if ∥ũ∥∞ < ε and/or |J̃ | < ε
break

return x̄, ū, and {kt, Kt}T −1
t=0 .

The output is an open-loop trajectory (x̄, ū) that is locally optimal for the OCP, and a policy
π(t, x, x̄, ū) = ū + kt + Kt(x− x̄) that is locally optimal for closed-loop tracking.

17

Algorithmic details

Both iLQR and DDP produce an open-loop trajectory (x̄, ū) that is locally optimal for the OCP,
and a policy π(t, x, x̄, ū) = ū + kt + Kt(x− x̄) that is locally optimal for closed-loop tracking.

Since these methods are local optimization techniques, they can get stuck in local minima or
even diverge. A “good” initialization is often critical.

The second-order terms Hxx,t and Huu,t may not be positive-semidefinite and positive-definite,
respectively. We can try regularizing them (i.e., Hxx,t + µI and Huu,t + µI) or projecting them.

The termination criteria is a design choice. For example, we can stop when either the change
in control trajectory is “small”, or when the cost improvement is “small”.

During the forward pass, we need to make sure the new trajectory does not stray too far from
the linearization in the previous iteration. We could penalize deviations more heavily, or do a
line search on the policy rollout.

A great collection of tips with mathematical details can be found in (Tassa, 2011, §2.2.3).
18

Next class

The Hamilton-Jacobi-Bellman (HJB) equation
(i.e., dynamic programming in continuous-time)

19

References

Y. Tassa. Theory and Implementation of Biomimetic Motor Controllers. PhD thesis, The Hebrew
University of Jerusalem, 2011.

20

	LQR feedback for linear systems with quadratic costs
	Linear and nonlinear tracking LQR
	iLQR and DDP for trajectory optimization
	References

