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Outline

Stochastic Optimal Control: Markov Decision Process (MDP)
The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:
 Exact Methods:
* (Policy Evaluation)
e Value lteration
* Policy lteration
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Stochastic Optimal Control Problem:
Markov Decision Problem (MDP)

. System:x; | =/, (xk, u,, wk),k =0,...,N—1
. Probability distribution: wy, ~ P ( - | X, ;)

» Control constraints: 4, € U (xk)

 Policies: & = {JZ'O. ces JZ'N_I}, where i, = m, (xk)

 Expected Cost:
N—1

J (xo) = Cwk=0,...,.N—1 [gN (xN> T Z 8k <xk9 Tk (xk>»wk>

k=0

Stochastic Optimal Control Problem:

J* (xo) = minJ, (xo)

T
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Key points

e Discrete-time model
 Markovian model

» Qbjective: find optimal closed-loop policy

« Additive cost (central assumption in DP)

 Risk-neutral formulation

Other communities use different notation:
[Powell, W. B. Al, OR and control theory: A Rosetta Stone for stochastic optimization. Princeton

University, 2012.]
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Principle of optimality (stochastic case)

Principle of optimality:

0°>"1> " "7"N-1
» (Consider the tail subproblem

. Letr™* = {Jz* T, ..., X } be an optimal policy

N—-1

PN EDWACEACARS

k=i

the tail policy {Jrl.*, . Jr;’\j_l} is optimal for the tail subproblem

Intuition:

* DP first solves ALL tail subproblems at the final stage

* At the generic step, it solves ALL tail subproblems of a given time length, using solution of tall
subproblems of shorter length
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DP Algorithm (stochastic case)

Like In the deterministic case, start with:

Iy (XN) — 8N (XN)

and iterate backwards in time using

J7 (xk) = min [k, [gk (xk, u,, wk) +JF (f(xk, u,, wk))], k=0,.,N—1

u,cl (xk)

for which the optimal cost J*(X,) is equal to Jy(X,) and the optimal policy is constructed by setting

ﬂ]f (xk) = argmin = [gk (xk, u,, wk) + J]j<+1 (f (xk, u,, wk) )]
ukeU(xk)
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Example: Inventory Control Problem

x;, € N: stock available
u;, € N: inventory
w, € N: demand

Dynamics: X;41 = max (O,xk + Uy, — wk)
Constraints: X, +u <2

Probabilistic structure: p(w, = 0) = 0.1

2 ) More generally, could imagine costs:
Objective: = 0 + Z (Ltk + (xk + U, — Wk) ) H(x;): holding inventory
k=0 B(u;,): buying inventory

—— %/_J S(xz, Uy, wy): selling (matching stock with demand)

83 (x3) 8 k(xk, u, Wk)
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Example: Inventory Control Problem

Algorithm takes the form

J]f (xk) = min = [t (xk + u;, — Wk)2 + J1j<+1 (maX (O,xk + Uy, — wk) )]

fork =0,1,2
For example ] -
J50)= min E, (u, + (u2 — wz) =
u2=0,1,2 = -

min 1, + 0.1 ()" + 0.7 (1 = 1)+ 0.2 (1 = 2)°
u,=0,1,2

Which vields J;‘(O) = 1.3 and ﬂj(O) =1



Example: Inventory Control Problem

Final solution:
J#(0) = 3.7
JE(1) = 2.7
J¥(2) = 2.818

(See this spreadsheet)



https://docs.google.com/spreadsheets/d/1CNFM2p74SWaM5mCrYrNB4cbYTwB0PifAo6wTBp0qNxI/edit#gid=0

Stochastic LQR

Find control policy that minimizes

Subject to

. DyﬂamiCS Xk-l—l =Aka+Bkllk+ Wk’ k € {O,l,...,N— 1}

with Xy ~ A <x_0, Zx0>, {wk ~ N (O, Zwk> } independent and Gaussian vectors

4/19/2023 AA203 | Lecture 6

11



Stochastic LQR

As in the deterministic case, with ]]:k { (Xk_|_1> 5 Xk+1Pk+1Xk+1

Je (Xk+1) = min [, _gk (Xk» 172 Wk) +JF (f(xk’ Uy, Wk))_

Uy
1 ‘
= min > w, [X Qkxk +u, "R, + (Akxk + Bu, + Wk) Py (Akxk + Bu, + Wk)
u, _
N
= nlllm > Cw, X LOX, +u, Rau + (Akxk + Bkuk) P (Akxk + Bkuk)
. _

. :
2 (Akxk + Bkuk) P W, +Ww, Pk+1wk

1

= min n ( X QX + W Ry + (Ax, + Bk“k) Prot (A + Buy) + <Pk+12Wk >>
Uy

* The optimal cost to go is increased by some constant related to the magnitude of the noise (on which we have no control on)

* The optimal policy is the same as in the deterministic case
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INfinite Horizon MDPs

State: xed

Action: ue U

Transition function / Dynamics: I (xt | x,_1, ut_l) =p (xt | X,_1, ut_l)
Reward function: r,=R(C,u): T XU - R
Discount factor: y € (0,1)

Stationary policy: u; = 7(x,)

Goal: choose a policy that maximizes cumulative (discounted) reward

r* = arg max[E, 2 7'R <xt, 7 (x,) )

7t >0
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Typically represented as a tuple
M= (X, %, T,R,y)
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Value functions

State-value function: “the expected total reward if we start in that state and act
IO. : C Vyz(x) — _p Z }/tR <xl" ]T ('xt> )
accordingly to a particular policy .
1>
Action-state value function: “the expected total reward if we start in that state, take Q (x u) [ 2 th (x y )
an action, and act accordingly to a particular policy” S p S
>0

Optimal state-value function V#(x) = max V (x)
/A

Optimal action-state value function  Q*(x, u) = max Q_(x, u)
T
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Bellman Equations

Value functions can be decomposed into immediate reward plus discounted value of successor state

sz (xt) = Iz [R (xt, T (x)) + yVﬂ <Xt+1)] Bellman Expectation Equation

=R (xta T (xt)) T Z T<xt+1 | X, 7@ (xl‘)) \2 (xt+1)

X1 €X

Similarly, also optimal value function can be decomposed as:
Bellman Optimality Equation

%4 (xt) = max | R (xt, ut) +y Z T(xtﬂ | x,, ut) %4 (xtH)

U
X4 1€X
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Three paradigms that rely on DP

For prediction:
» Policy Evaluation: “given a policy x, find the value function V_(x), i.e., how good is that policy?”

For control.
* Policy lteration: leverages policy evaluation as an inner loop to find the optimal policy

* Value lteration: applies Bellman’s optimality equation to compute the optimal value function
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Policy Evaluation

Problem: evaluate a given policy &
Solution: iterative application of Bellman expectation backup (V= V,—...=» V)

e At each iteration k+1
e For all states xeX

» Update V., ((x) from V,(x) through

Bellman Expectation Equation

Vit (xt> =R (xt’ T (xt)> Ty 2 I <Xt+1 | X, 7 (xt)) Vi (xt+1)

X1 €X

- This sequence is proven to converge to V_
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[
Example: Grid World
p ] From Sutton and Barto, Reinforcement Learning: An Introduction (Chapter 4)

1 |2 |3
A
- - 4 |5 |6 |7
| 8 |9 |10 [11
ion
actions 12 |13 |14
 Nonterminal states 1, ..., 14. Terminal states as shaded squared

 Reward is -1 until the terminal state Is reached
» (Controls leading out of the grid leave state unchanged

» Undiscounted MDP (y = 1)
* We want to evaluate a uniform random policy
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Some technical questions

» How do we know that iterative policy evaluation converges to V*?
* |s the solution unique®
* How fast does this algorithm converge”

These questions are resolved by the contraction mapping theorem

Sketch of proof:

. Def: 0o-norm ||u — V||, = max |u(x) — v(x) |, i.e. the largest difference between state values
XEX

» Def: an update operation is a y-contraction if ||U;,; — Vi || < |U; = Vi, VYU, V,

« Theorem: a y-contraction converges to a unique fixed point, no matter the initialization, at a linear
convergence rate of ¥y

 Fact: the policy evaluation operator is a y-contraction in co-norm
» Corollary: policy evaluation converges to a unique fixed point

4/19/2023 AA203 | Lecture 6
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Policy lteration

starting
V &t

Given policy @

Evaluate the policy n -

Vit (xt> =R (xv T (xt)> Ty 2 I (xt+1 | X, (xt)) Vi (xt+1)

X1 €X

Improve the policy z by acting greedily w.rt. V_

7, (x) = argmax | R(x,u) +y Z T(xtH | X, ut) Vit (xt+1)
u

X €L

* |n general, policy iteration requires more iterations of evaluation / improvement (in our small Grid World, one was sufficient)
* This process always converges to the optimal policy
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Policy Improvement

» Given a deterministic policy z(x)
* \We can improve the policy by acting greedily w.r.t. the current value function

7'(x) = argmax g (x, u)
UEYU

 Consider the one step decision, where we use 7’ for one step and then act accordingly to the old policy 7
Gy (5, 7(5)) = max q,(s,a) > (s, 7(s)) = v,(s)

ac

» If we repeat the same reasoning for all following steps, we can see how this improves the value function v_{x) > v_(x)
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Value lteration

Problem: find the optimal policy 7*
Solution: iterative application of Bellman optimality backup (V= V,—...= V)

e At each iteration k+1
e For all states xeX

+ Update V,_ (x) from V,(x) through Bellman Optimality Equation

Vit <xf> = max | R (xt’ ut) TY Z T<xt+1 | X, ut) Ve (xt+1>

u
X1 €EX

 This sequence is proven to converge to V*
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Exe rC i Se from Pieter Abbeel, CS287

4/19/2023

-10.00||(-10.00(||-10.00|(({-10.00(||-10.00

(a) Prefer the close exit (+1), risking the cliff (-10)

(b) Prefer the close exit (+1), but avoiding the cliff (-10)
(c) Prefer the distant exit (+10), risking the cliff (-10)

(d) Prefer the distant exit (+10), avoiding the cliff (-10)
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(1) y=0.1, noise = 0.5
(2) y=0.99, noise =0
(3) y=0.99, noise =0.5

(4) y=0.1, noise =0
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Recap

Problem Bellman Equation Algorithm
. . . lterative
Prediction | Bellman Expectation Equation . .
Policy Evaluation
Bellman Expectation Equation . .
Control Pe 4 Policy lteration
+ Greedy Policy Improvement
Control Bellman Optimality Equation Value lteration

All of these formulations require a model of the MDP!
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Outline

Stochastic Optimal Control: Markov Decision Process (MDP)
The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:
 Exact Methods:
* (Policy Evaluation)
e Value lteration
* Policy lteration
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Next time

* Nonlinear LQR for tracking
« LQR
« DDP
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