AA203 Optimal and Learning-based Control
L ecture 5

Dynamic

“rogramming

Autonomous systems Lapboratory
Daniele Gammell

"" ,.0000“““‘
"" QO J UN[O* ““
"co «oga /; Flfg/& %n.
g \
I 25 "2\ o o
E(N
PRI
)3
\ <
A\ //JW o ‘:
NS =Y X
N X4

) S
v

A

Autonomous Systems Laboratory
Stanford Aeronautics & Astronautics

Roadmap

4/17/2023

Adaptive

Model-free RL

optimal control

Optimal and
learning control

Control
|
! }
Feedback control Adaptive control
|
Open-loop |----------=-mmmmmmmmmem-

|

Indirect
methods

Direct
methods

MPC

AA203 | Lecture 5

.

Model-based RL

Closed-loop

DP

|

HJB / HJI

(1) Intro to dynamic programming and principle of optimality

Outline of the next two lectures

Intro to dynamic programming (DP) and principle of optimality
The dynamic programming algorithm

Dynamic programming in control:

e Discrete LQR This lecture

» Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR

* Policy lteration and Value Iteration

4/17/2023 AA203 | Lecture 5

(1) Intro to dynamic programming and principle of optimality

Dynamic Programming

A method for solving complex problems, by:

» Breaking them down into subproblems
» Combining solutions to subproblems

Dynamic Programming is a very general solution method for problems which have two properties:

« Optimal substructure (Principle of optimality applies)
« Optimal solution can be decomposed into subproblems, e.g., shortest path

* Overlapping subproblems

* Subproblems recur many times
e Solutions can be cached and reused

4/17/2023 AA203 | Lecture 5 4

(1) Intro to dynamic programming and principle of optimality

Other applications of Dynamic Programming

Dynamic programming is used across a wide variety of domains, e.g.

« Scheduling algorithms

* Graph algorithms (e.g., shortest path algorithms)
« Graphical models in ML (e.qg., Viterbi algorithm)

« Etc.

4/17/2023 AA203 | Lecture 5 5

(1) Intro to dynamic programming and principle of optimality
Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality

Suppose the optimal path for a multi-stage decision-making problem with additive cost structure is

Multi-stage:
- First decision yields segment a-b with cost J_,

- Remaining decisions yield segments b-e with cost J,,

Additive cost:
» The optimal cost is then J* = J ;, + Jj,,

4/17/2023 AA203 | Lecture 5

(1) Intro to dynamic programming and principle of optimality

Principle of optimality

Claim: if a - b - e is the optimal path from a to e, then b - e is the optimal path from b to e

Proof: suppose b-c-e Is the optimal path from b to e. Then

che < Jbe

Contradiction!
Jab T+ che < Jab T Jbe =J 2<e

4/17/2023 AA203 | Lecture 5 7

(1) Intro to dynamic programming and principle of optimality

Principle of optimality

Principle of optimality (for discrete-time systems):

Let % = {Jl'ak,ﬂik, ...,ﬂ*_l

Assume state x; is reachable.

} be an optimal policy.

Consider the subproblem whereby we are at X, at time k and we wish to minimize the cost-to-go from time k to time V.

Then the truncated policy {ﬂ:, Jr]:‘jrl, - ﬂ;‘\j_l } is optimal for the subproblem.

Tail policies are optimal for tail subproblems

Notation: for brevity 7;° (Xk) = 1" (Xk, k)

4/17/2023 AA203 | Lecture 5 8

(1) Intro to dynamic programming and principle of optimality

Applying the principle of optimality

C
Consider the case where we want to find the optimal path from b to f, J °
and that we know the cost of the optimal path from {c, d, e} to f. ":,/
Jog d
bt-.tf.-c
~
Jbe "‘3

The principle of optimality tells us that the optimal policy is comprised
of optimal sub-policies

Hence, the optimal trajectory is found by comparing:
Cbcf — ch + J;I}
def — de + J:lx}
Cbef — Jbe + J:;f

The “cost-to-go” allows us to only compute one-step look-ahead

4/17/2023 AA203 | Lecture 5 9

(1) Intro to dynamic programming and principle of optimality

Applying the principle of optimality

* Need only to compare the concatenations of immediate decisions and optimal decisions — significant decrease In
computation/possibilities

* |n practice: carry out this procedure backward in time

4/17/2023 AA203 | Lecture 5 10

(1) Intro to dynamic programming and principle of optimality

Example

point

4/17/2023 AA203 | Lecture 5 11

(1) Intro to dynamic programming and principle of optimality

J*(a) =18 J*(d) = 10 J*(e) =7
e Final
d = — e h

—-
3 8
N
’ 4
2 2 W—Jy—E
|
S
3 3

¢ T> [A — g
J"(b) =17 J*(c) =8 =5 J(g =2

4/17/2023 AA203 | Lecture 5 12

(2) The dynamic programming algorithm

DP Algorithm

Model: X | =f(Xk, u,, k), uy e U (Xk)

N-1
Cost: J (XO) = hy (XN) + Z g (Xk, T, (Xk), k)
k=0
DP Algorithm:

For every initial state X, the optimal cost J*(X,) is equal to]ak(xo), given by the last step of the following algorithm, which

proceeds backward in time from stage N — 1 to stage 0:

In(xN) = hn(xn)
J. (Xg) = min g(Xg, ug, k) + J,;"H(f(xk, ug, k), k=0,....N—1

ukEU(xk)

Furthermore, if u;{I< = ﬂ]j‘ (Xk) minimizes the right hand side of the above equation for each X, and k, the policy

S % - -
{71'0 , T ...,JZ'N_I} IS optimal

4/17/2023 AA203 | Lecture 5 13

(2) The dynamic programming algorithm

Comments

 Discretization (from differential equations to difference equations)

* Quantization (from continuous to discrete state variables / controls)
« (Guaranteed to converge to a global minimum

« (Constraints, in general, simplify the numerical procedure

» Optimal control in closed-loop form

» Curse of dimensionality (both computationally and w.r.t. memory)

* Typically involves

» Offline computation of optimal costs (backward)
* online planning through (forward) construction of solution

4/17/2023 AA203 | Lecture 5 14

Outline

Dynamic programming in control:

 Discrete LQR
» Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR

* Policy lteration and Value Iteration

4/17/2023 AA203 | Lecture 5

15

(3a) Discrete LQR

Discrete LQR

« (Canonical application of dynamic programming for control

* One case where DP can be solved analytically (in general, DP algorithm must be performed numerically)

Discrete (Deterministic) LQR : Select control inputs to minimize

1 1 o
Jo (Xo) = 5"1(7 NXN T B Z (Xl{ 0%y + W Ryuy + 2x; Sy)
k=0

Subject to dynamics
Xk+1 =Aka+Bkllk, kE {O,l,,N— 1}

Assuming]]
O S

=0l'>0, R =R!>0,

>0 Vk

4/17/2023 AA203 | Lecture 5 16

(3a) Discrete LQR

Extensions

Many important extensions, some of which we’ll cover later in this class

» (Cost with linear terms, affine dynamics: can consider today’s analysis with augmented dynamics

o _Xk_|_1_ o Ak Ci Xk B _oq ~
Yi+1 = 1 =1 ! 1 + 0 u, = Ayg + Bug

« Tracking LQR: X;, u, represent small deviations (“errors”) from a nominal trajectory (possibly with nonlinear

dynamics)

 Stochastic systems Xpp1 = Ay + By +wy, wp ~ N (0,2,)

4/17/2023 AA203 | Lecture 5 17

(3a) Discrete LQR

Discrete LQR - Trajectory Optimization

* \We could approach the LQR problem as a trajectory optimization problem, where we rewrite

1 1 &
Jo (XO) XNQNXN + — Z Qkxk + "R, +2x Skuk)

// %4 //
_ - T - -
. . X S X
Subject to dynamics ug 200 R ug
X1 Q1 S1 X1
Xk-l—l =Aka+Bkllk, kE {O,l,...,N— 1} . 1 Uy Si‘F R, uq
min —
XN-1 Qn-1 Sn-1 XN-1
un_1 S% 1 Rn-1 un_1
XN QN XN
1 X0 | _X()_
min -z! Wz i | wo 0
Z) —1I X1 0
AO BO —1 U1 0
st. Cz+d=0 ot A, By -—1I x2 | L]|0] =g
An-1 By —1 XN_1 0
uy-—1 0
XN i 0 |
C // d

4/17/2023 AA203 | Lecture 5 18

(3a) Discrete LQR

Discrete LQR - Trajectory Optimization

We can then solve this problem by applying the NOC (which, due to the problem’s convexity, are also SOC)

, 1
min —-z! Wz
Z

s.t. Cz4+d=0

Specifically:

]
L(z,)) = EZTWZ +1T(Cz+ d)

1 1 T T T
VL=—Wet—Wiz+CTA=Wz+CTA=0

<

2] W CT]7 [0’

i c 0 a Solving this requires O[(N(m + n))’]

Compactly,

4/17/2023 AA203 | Lecture 5 19

Discrete LQR - Dynamic programming

Solving through DP allows us to

(1) Solve in O[N(m + n)’] vs O[(N(m + n))’]

(2) Obtain a closed-loop policy m(Xy)

First step:

Proceeding backward in time:

4/17/2023

) 1 1
JN(XN) — 551?%@]\[%]\7 — 53’}1]\}PNCE‘N
* . 1 _XN—l_ _QN—l
Tn-1ev-1) = an 1 2 (_U—Nl_ Sh-1
. 1 _XN—l_ -QN—l
" uns 2 (_HN'1_ ;9£_1

(An_1XN—1 + By_1un_1) PN(AN_1XNn_1 + BN1UN1)>

SN—1| |XN=1
RN—l_ (UN-—1 |

SN—l XN-—-1

Ry_1]| [un—1

AA203 | Lecture 5

-+ X%PNXN)

|

(3a) Discrete LQR

20

(3a) Discrete LQR

Discrete LQR - Dynamic programming

Unconstrained NOC: Notice that:
* The optimal policy is a time-varying linear
feedlback policy (i.e., we can just store

the matrices £)
* The cost-to-go Is a quadratic function of

Vuy 1 JIN—1(XN_1) = Ry_1un_1 + Sx_Xn_1+

By Pv(AN_1Xy_1+ By_1un_1) =0

= Uy = ~(Bn-1+ By_1 PvBn—1) " (By_1 Py An—1 + Sy_1)xn—1 the state at each step (!)
does not depend on time Additionally:

Note also that SOC hold: ViN_le_l(xN_l) = Ryx_1+ Bx_{PvBy_1 >0 |n the infinite horizon case, this is
guaranteed to converge to the optimal
policy (as long as there exist a policy that
can drive the system to zero)
» Often most convenient to use steady

] . . . state I
(An_1PNBy-1+ Sn_1)(Rn—1+ By_1PnvBn-1) " (Bn_1PNAN-1+ Sn_1)) XN-1

1
A
= §XN_1PN—1XN—1

To obtain the optimal cost-to-go, we plug in the optimal policy to obtain:

1

JN_1(xXn—1) = §X1];[_1 (QN—1 T A%_leAN—l_

4/17/2023 AA203 | Lecture 5 21

(3a) Discrete LQR

Discrete LQR - Dynamic programming

Proceeding by induction, we derive the Riccati recursion:

-

. Pn =Qn
2. Fr, = —(Ry + Bf P,y 1By) ' (B Pry1Ap + SE)
3. Po,=Qr+ A} P, 1Ak—
(A{ Pyy1By + Si)(Ry + B Pyy1Bi) N (BE Pop1 Ay + SP)
4, mp(Xk) = Frpxy

. 1
5. Jk: (Xk) — §XZPI<:XI€

Which enables us to

« Compute the policy backwards in time (and store it)
* Apply the policy forward in time

4/17/2023 AA203 | Lecture 5 22

Outline

» Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR

* Policy lteration and Value Iteration

4/17/2023 AA203 | Lecture 5

23

(3b) Stochastic OCP

Stochastic Optimal Control Problem:
Markov Decision Problem (MDP)

. System:x; | =/, (xk, u,, wk),k =0,...,N—1
. Probability distribution: wy, ~ P (- | X, ;)

» Control constraints: 4, € U (xk)

 Policies: & = {JZ'O. ces JZ'N_I}, where i, = m, (xk)

 Expected Cost:
N—1

J (xo) = Cwk=0,...,.N—1 [gN (xN> T Z 8k <xk9 Tk (xk>»wk>

k=0

Stochastic Optimal Control Problem:

J* (xo) = minJ, (xo)

T

4/17/2023 AA203 | Lecture 5 24

(3b) Stochastic OCP

Key points

e Discrete-time model
 Markovian model

» Qbjective: find optimal closed-loop policy

« Additive cost (central assumption in DP)

 Risk-neutral formulation

Other communities use different notation:
[Powell, W. B. Al, OR and control theory: A Rosetta Stone for stochastic optimization. Princeton

University, 2012.]

4/17/2023 AA203 | Lecture 5 25

(3b) Stochastic OCP

The DP algorithm (stochastic case)

Principle of optimality:

S % ok % - -
. Letm™ = {JZ'O ST s eees JZ'N_l} be an optimal policy
» (Consider the tail subproblem

N—-1

PN EDWACEACARS

k=i

the tail policy {Jrl.*, . Jr;’\j_l} is optimal for the tail subproblem

Intuition:

* DP first solves ALL tail subproblems at the final stage

* At the generic step, it solves ALL tail subproblems of a given time length, using solution of tall
subproblems of shorter length

4/17/2023 AA203 | Lecture 5 26

(3b) Stochastic OCP

DP Algorithm (stochastic case)

Like In the deterministic case, start with:

Iy <XN> = 8N (XN)

and iterate backwards in time using

J; (xk) = mm [k, [gk (xk, u,, wk) + Jip1 (f(xk, u,, wk))], k=0,.,N-—1

u,cl (xk)

for which the optimal cost J*(X,) is equal to Jy(X,) and the optimal policy is constructed by setting

ﬂ]f (xk) = argmin = [gk (xk, u,, wk) + Jip1 (f(xk, u,, wk))]
ukeU(xk)

4/17/2023 AA203 | Lecture 5 27

Next time

4/17/2023

Stochastic Dynamic Programming
Infinite-Horizon MDPs

Value lteration

Policy lteration

AA203 | Lecture 5

28

