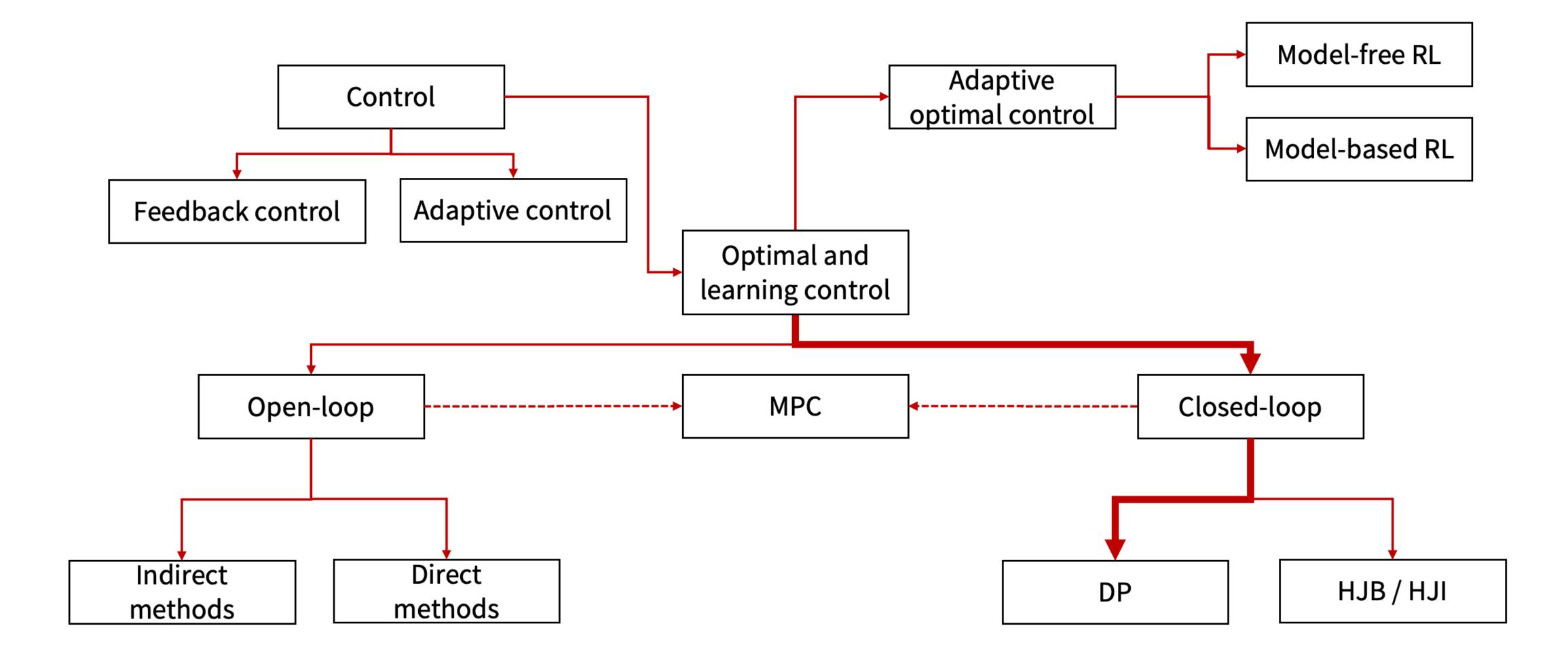
AA203 Optimal and Learning-based Control Lecture 5

Dynamic Programming

Autonomous Systems Laboratory

Daniele Gammelli

Roadmap



Outline of the next two lectures

Intro to dynamic programming (DP) and principle of optimality

The dynamic programming algorithm

Dynamic programming in control:

• Discrete LQR This lecture

- Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR
- Policy Iteration and Value Iteration

Dynamic Programming

A method for solving complex problems, by:

- Breaking them down into subproblems
- Combining solutions to subproblems

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure (*Principle of optimality* applies)
 - Optimal solution can be decomposed into subproblems, e.g., shortest path
- Overlapping subproblems
 - Subproblems recur many times
 - Solutions can be cached and reused

Other applications of Dynamic Programming

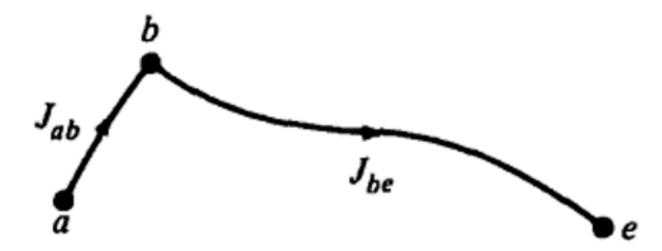
Dynamic programming is used across a wide variety of domains, e.g.

- Scheduling algorithms
- Graph algorithms (e.g., shortest path algorithms)
- Graphical models in ML (e.g., Viterbi algorithm)
- Etc.

Principle of optimality

The key concept behind the dynamic programming approach is the principle of optimality

Suppose the optimal path for a multi-stage decision-making problem with additive cost structure is



Multi-stage:

- First decision yields segment a-b with cost J_{ab}
- Remaining decisions yield segments b-e with cost J_{be}

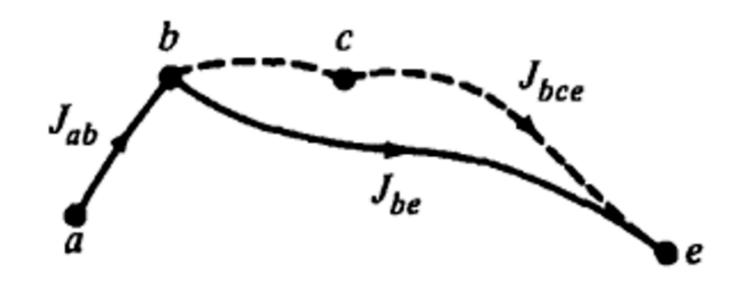
Additive cost:

- The optimal cost is then $J_{ab}^{*}=J_{ab}+J_{be}$

Principle of optimality

Claim: if a - b - e is the optimal path from a to e, then b - e is the optimal path from b to e

Proof: suppose b-c-e is the optimal path from b to e. Then



$$J_{bce} < J_{be}$$

$$J_{ab} + J_{bce} < J_{ab} + J_{be} = J_{ae}^*$$

Contradiction!

Principle of optimality

Principle of optimality (for discrete-time systems):

Let
$$\pi^* := \left\{ \pi_0^*, \pi_1^*, ..., \pi_{N-1}^* \right\}$$
 be an optimal policy.

Assume state x_k is reachable.

Consider the subproblem whereby we are at x_k at time k and we wish to minimize the cost-to-go from time k to time N.

Then the truncated policy
$$\left\{\pi_k^*, \pi_{k+1}^*, \dots, \pi_{N-1}^*\right\}$$
 is optimal for the subproblem.

Tail policies are optimal for tail subproblems

Notation: for brevity
$$\pi_k^* \left(\mathbf{x}_k \right) = \pi^* \left(\mathbf{x}_k, k \right)$$

Applying the principle of optimality

Consider the case where we want to find the optimal path from b to f, and that we know the cost of the optimal path from {c, d, e} to f.

The principle of optimality tells us that the optimal policy is comprised of optimal sub-policies

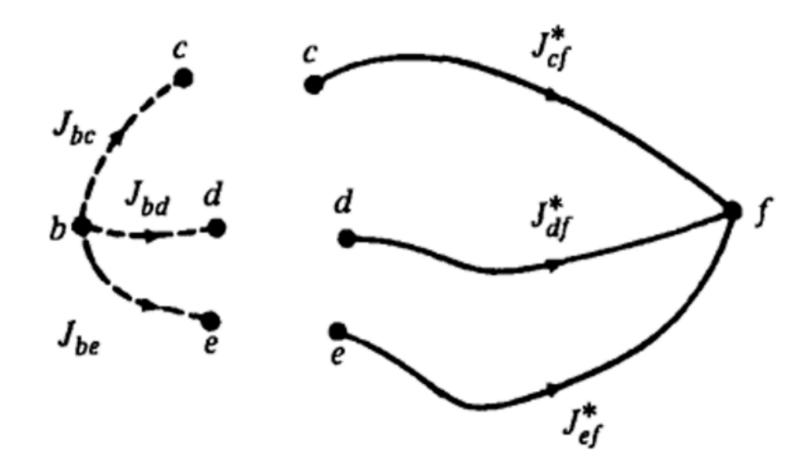
Hence, the optimal trajectory is found by comparing:

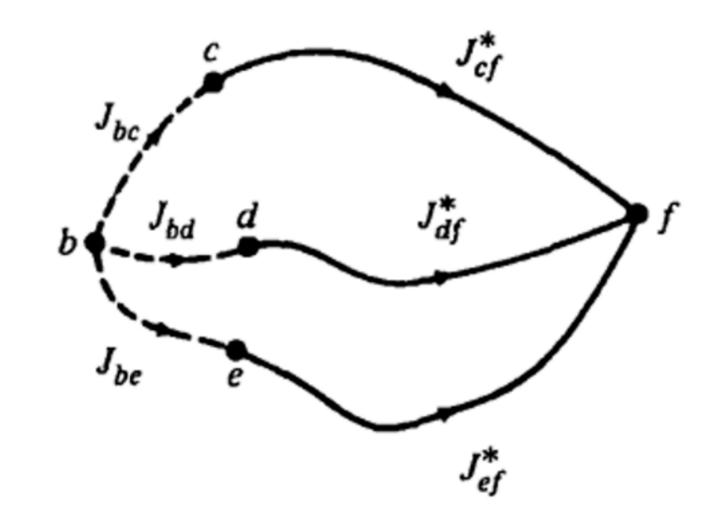
$$C_{bcf} = J_{bc} + J_{cf}^*$$

$$C_{bdf} = J_{bd} + J_{df}^*$$

$$C_{bef} = J_{be} + J_{ef}^*$$

The "cost-to-go" allows us to only compute one-step look-ahead

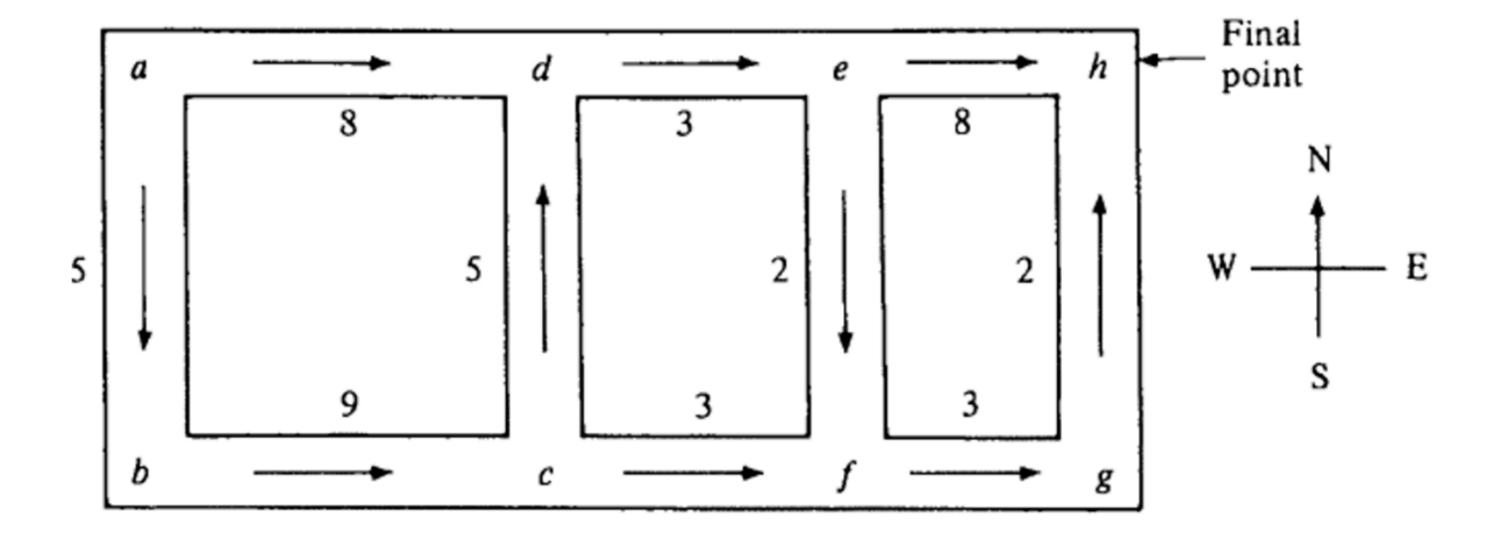




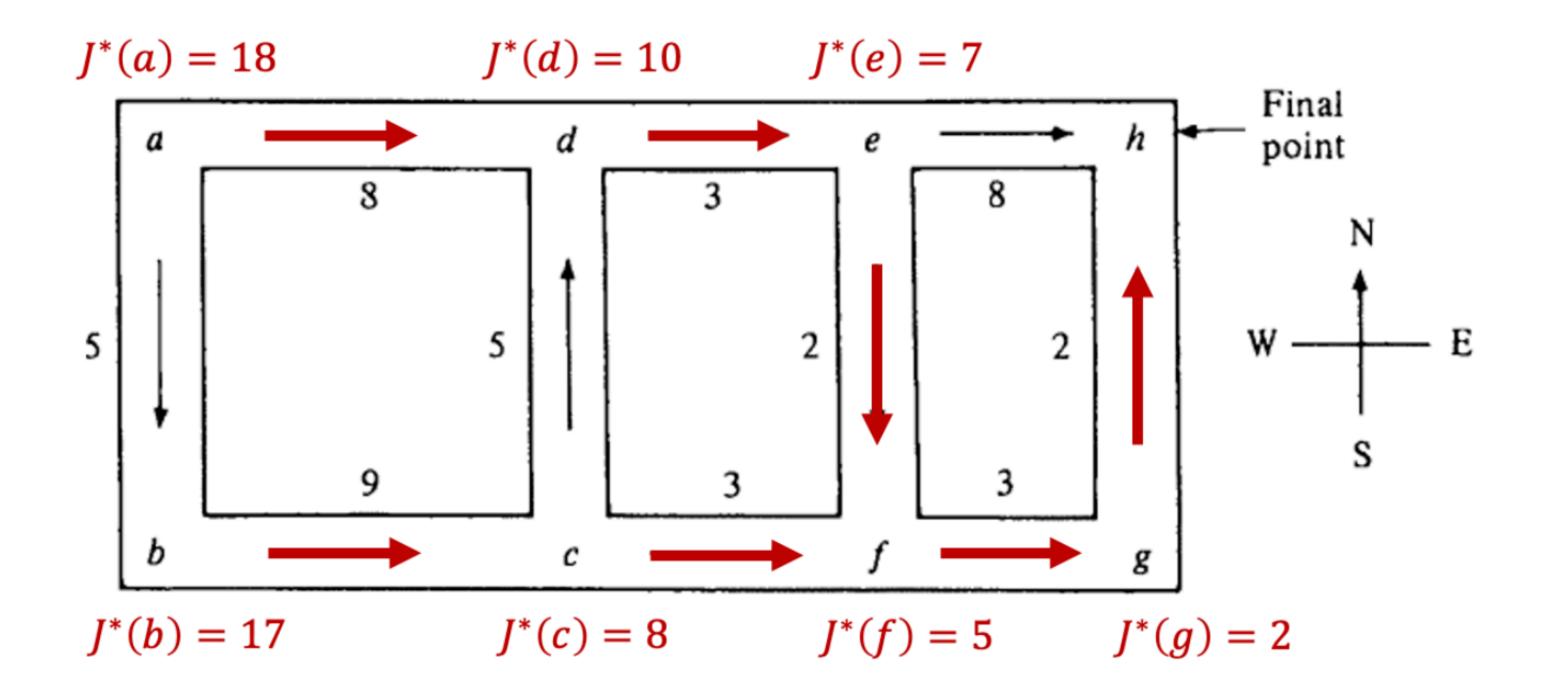
Applying the principle of optimality

- Need only to compare the concatenations of immediate decisions and optimal decisions → significant decrease in computation/possibilities
- In practice: carry out this procedure **backward** in time

Example



Example



DP Algorithm

Model:
$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{u}_k, k)$$
, $\mathbf{u}_k \in U(\mathbf{x}_k)$
Cost: $J(\mathbf{x}_0) = h_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g(\mathbf{x}_k, \pi_k(\mathbf{x}_k), k)$

DP Algorithm:

For every initial state \mathbf{x}_0 , the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0^*(\mathbf{x}_0)$, given by the last step of the following algorithm, which proceeds backward in time from stage N-1 to stage 0:

$$J_N^*(\mathbf{x}_N) = h_N(\mathbf{x}_N) \ J_k^*(\mathbf{x}_k) = \min_{\mathbf{u}_k \in U(\mathbf{x}_k)} g(\mathbf{x}_k, \mathbf{u}_k, k) + J_{k+1}^*(f(\mathbf{x}_k, \mathbf{u}_k, k)), \quad k = 0, \dots, N-1$$

Furthermore, if $\mathbf{u}_k^* = \pi_k^* \left(\mathbf{x}_k \right)$ minimizes the right hand side of the above equation for each \mathbf{x}_k and k, the policy $\left\{ \pi_0^*, \pi_1^*, \dots, \pi_{N-1}^* \right\}$ is optimal

Comments

- Discretization (from differential equations to difference equations)
- Quantization (from continuous to discrete state variables / controls)
- Guaranteed to converge to a global minimum
- Constraints, in general, simplify the numerical procedure
- Optimal control in closed-loop form
- Curse of dimensionality (both computationally and w.r.t. memory)
- Typically involves
 - offline computation of optimal costs (backward)
 - online planning through (forward) construction of solution

Outline

Intro to dynamic programming (DP) and principle of optimality

The dynamic programming algorithm

Dynamic programming in control:

- Discrete LQR
- Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR
- Policy Iteration and Value Iteration

Discrete LQR

- Canonical application of dynamic programming for control
- One case where DP can be solved analytically (in general, DP algorithm must be performed numerically)

Discrete (Deterministic) LQR: Select control inputs to minimize

$$J_0\left(\mathbf{x}_0\right) = \frac{1}{2}\mathbf{x}_N^T Q_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k + 2\mathbf{x}_k^T S_k \mathbf{u}_k\right)$$

Subject to dynamics

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k, \quad k \in \{0, 1, ..., N-1\}$$

Assuming

$$Q_k = Q_k^T \ge 0, \quad R_k = R_k^T > 0, \quad \begin{bmatrix} Q_k & S_k \\ S_k^T & R_k \end{bmatrix} \ge 0 \quad \forall k$$

Extensions

Many important extensions, some of which we'll cover later in this class

• Cost with linear terms, affine dynamics: can consider today's analysis with augmented dynamics

$$\mathbf{y}_{k+1} = \begin{bmatrix} \mathbf{x}_{k+1} \\ 1 \end{bmatrix} = \begin{bmatrix} A_k & c_k \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u}_k = \tilde{A}\mathbf{y}_k + \tilde{B}\mathbf{u}_k$$

• Tracking LQR: \mathbf{x}_k , \mathbf{u}_k represent small deviations ("errors") from a nominal trajectory (possibly with nonlinear dynamics)

• Stochastic systems

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k + \mathbf{w}_k, \quad \mathbf{w}_k \sim \mathcal{N}(0, \Sigma_{\mathbf{w}_k})$$

18

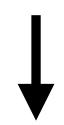
Discrete LQR - Trajectory Optimization

• We could approach the LQR problem as a trajectory optimization problem, where we rewrite

$$J_0\left(\mathbf{x}_0\right) = \frac{1}{2}\mathbf{x}_N^T Q_N \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k + 2\mathbf{x}_k^T S_k \mathbf{u}_k\right)$$

Subject to dynamics

$$\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k, \quad k \in \{0, 1, ..., N-1\}$$



$$\begin{array}{ccc}
\min & \frac{1}{2} \mathbf{z}^T W \mathbf{z} \\
\mathbf{z} & C \mathbf{z} + \mathbf{d} - \mathbf{e}
\end{array}$$

4/17/2023 AA203 | Lecture 5

Discrete LQR - Trajectory Optimization

We can then solve this problem by applying the NOC (which, due to the problem's convexity, are also SOC)

$$\min_{\mathbf{z}} \quad \frac{1}{2} \mathbf{z}^T W \mathbf{z}$$
s.t. $C \mathbf{z} + \mathbf{d} = \mathbf{0}$

Specifically:

$$L(z,\lambda) = \frac{1}{2}z^{\mathsf{T}}Wz + \lambda^{\mathsf{T}}(Cz+d)$$

$$\nabla_z L = \frac{1}{2}Wz + \frac{1}{2}W^{\mathsf{T}}z + C^{\mathsf{T}}\lambda = Wz + C^{\mathsf{T}}\lambda = 0$$

$$\nabla_z L = Cz + d = 0$$

Compactly,
$$\begin{bmatrix} \mathbf{z}^* \\ \boldsymbol{\lambda}^* \end{bmatrix} = \begin{bmatrix} W & C^T \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{0} \\ -\mathbf{d} \end{bmatrix}$$
 Solving this requires $\mathcal{O}[(N(m+n))^3]$

20

Discrete LQR - Dynamic programming

Solving through DP allows us to

- (1) Solve in $\mathcal{O}[N(m+n)^3]$ vs $\mathcal{O}[(N(m+n))^3]$
- (2) Obtain a *closed-loop* policy $\pi(\mathbf{x_t})$

First step:
$$J_N^*(\mathbf{x}_N) = \frac{1}{2}x_N^TQ_Nx_N = \frac{1}{2}x_N^TP_Nx_N$$

Proceeding backward in time:

$$J_{N-1}^{*}(\mathbf{x}_{N-1}) = \min_{\mathbf{u}_{N-1}} \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix}^{T} \begin{bmatrix} Q_{N-1} & S_{N-1} \\ S_{N-1}^{T} & R_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix} + \mathbf{x}_{N}^{T} P_{N} \mathbf{x}_{N} \right)$$

$$= \min_{\mathbf{u}_{N-1}} \frac{1}{2} \left(\begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix}^{T} \begin{bmatrix} Q_{N-1} & S_{N-1} \\ S_{N-1}^{T} & R_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{N-1} \\ \mathbf{u}_{N-1} \end{bmatrix} + \left(A_{N-1} \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1} \right)^{T} P_{N} (A_{N-1} \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1}) \right)$$

Discrete LQR - Dynamic programming

Unconstrained NOC:

$$\nabla_{u_{N-1}} J_{N-1}(\mathbf{x}_{N-1}) = R_{N-1} \mathbf{u}_{N-1} + S_{N-1}^T \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1} + B_{N-1} \mathbf{u}_{N-1} = \mathbf{0}$$

$$B_{N-1}^T P_N (A_{N-1} \mathbf{x}_{N-1} + B_{N-1} \mathbf{u}_{N-1}) = \mathbf{0}$$

$$\Rightarrow \mathbf{u}_{N-1}^* = -(R_{N-1} + B_{N-1}^T P_N B_{N-1})^{-1} (B_{N-1}^T P_N A_{N-1} + S_{N-1}^T) \mathbf{x}_{N-1}$$

$$:= F_{N-1} x_{N-1}$$
does not depend on time

Note also that SOC hold: $\nabla^2_{u_{N-1}} J_{N-1}(\mathbf{x}_{N-1}) = R_{N-1} + B_{N-1}^T P_N B_{N-1} \succ 0$

To obtain the optimal cost-to-go, we plug in the optimal policy to obtain:

$$J_{N-1}^{*}(\mathbf{x}_{N-1}) = \frac{1}{2} \mathbf{x}_{N-1}^{T} \left(Q_{N-1} + A_{N-1}^{T} P_{N} A_{N-1} - \frac{1}{2} \mathbf{x}_{N-1}^{T} (Q_{N-1} + A_{N-1}^{T} P_{N} A_{N-1} - \frac{1}{2} \mathbf{x}_{N-1}^{T} P_{N} B_{N-1} + S_{N-1}^{T}) (R_{N-1} + B_{N-1}^{T} P_{N} B_{N-1})^{-1} (B_{N-1}^{T} P_{N} A_{N-1} + S_{N-1}^{T}) \right) \mathbf{x}_{N-1}$$

$$:= \frac{1}{2} \mathbf{x}_{N-1}^{T} P_{N-1} \mathbf{x}_{N-1}$$

Notice that:

- The optimal policy is a time-varying linear feedback policy (i.e., we can just store the matrices $F_{\it k}$)
- The cost-to-go is a quadratic function of the state at each step (!)

Additionally:

- In the infinite horizon case, this is guaranteed to converge to the optimal policy (as long as there exist a policy that can drive the system to zero)
- Often most convenient to use steady state ${\cal F}_{\infty}$

Discrete LQR - Dynamic programming

Proceeding by induction, we derive the Riccati recursion:

1.
$$P_N = Q_N$$

2.
$$F_k = -(R_k + B_k^T P_{k+1} B_k)^{-1} (B_k^T P_{k+1} A_k + S_k^T)$$

3.
$$P_k = Q_k + A_k^T P_{k+1} A_k - (A_k^T P_{k+1} B_k + S_k) (R_k + B_k^T P_{k+1} B_k)^{-1} (B_k^T P_{k+1} A_k + S_k^T)$$

$$\mathbf{4.} \ \pi_k^*(\mathbf{x}_k) = F_k \mathbf{x}_k$$

5.
$$J_k^*(\mathbf{x}_k) = \frac{1}{2}\mathbf{x}_k^T P_k \mathbf{x}_k$$

Which enables us to

- Compute the policy backwards in time (and store it)
- Apply the policy forward in time

Outline

Intro to dynamic programming (DP) and principle of optimality

The dynamic programming algorithm

Dynamic programming in control:

- Discrete LQR
- Stochastic Optimal Control Problem / Markov Decision Process (MDP): Stochastic LQR
- Policy Iteration and Value Iteration

24

Stochastic Optimal Control Problem: Markov Decision Problem (MDP)

- System: $x_{k+1} = f_k(x_k, u_k, w_k), k = 0, ..., N-1$
- Probability distribution: $w_k \sim P_k \left(\cdot \mid x_k, u_k \right)$
- Control constraints: $u_k \in U(x_k)$
- Policies: $\pi = \{\pi_0..., \pi_{N-1}\}$, where $\boldsymbol{u}_k = \pi_k\left(\boldsymbol{x}_k\right)$
- Expected Cost:

$$J_{\pi}\left(\mathbf{x}_{0}\right) = \mathbb{E}_{\mathbf{w}_{k}, k=0,...,N-1} \left[g_{N}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} g_{k}\left(\mathbf{x}_{k}, \pi_{k}\left(\mathbf{x}_{k}\right), \mathbf{w}_{k}\right) \right]$$

Stochastic Optimal Control Problem:

$$J^*\left(x_0\right) = \min_{\pi} J_{\pi}\left(x_0\right)$$

Key points

- Discrete-time model
- Markovian model
- Objective: find optimal closed-loop policy
- Additive cost (central assumption in DP)
- Risk-neutral formulation

Other communities use different notation:

[Powell, W. B. *Al, OR and control theory: A Rosetta Stone for stochastic optimization.* Princeton University, 2012.]

The DP algorithm (stochastic case)

Principle of optimality:

- . Let $\pi^* := \left\{\pi_0^*, \pi_1^*, ..., \pi_{N-1}^*\right\}$ be an optimal policy
- Consider the tail subproblem

$$\mathbb{E}_{w_k} \left[g_N\left(\mathbf{x}_N\right) + \sum_{k=i}^{N-1} g_k\left(\mathbf{x}_k, \pi_k\left(\mathbf{x}_k\right), \mathbf{w}_k\right) \right]$$

the tail policy $\left\{\pi_i^*, ..., \pi_{N-1}^*\right\}$ is optimal for the tail subproblem

Intuition:

- DP first solves ALL tail subproblems at the final stage
- At the generic step, it solves ALL tail subproblems of a given time length, using solution of tail subproblems of shorter length

27

DP Algorithm (stochastic case)

Like in the deterministic case, start with:

$$J_N(x_N) = g_N(x_N)$$

and iterate backwards in time using

$$J_k\left(\mathbf{x}_k\right) = \min_{\mathbf{u}_k \in U(\mathbf{x}_k)} \mathbb{E}_{w_k} \left[g_k\left(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k\right) + J_{k+1}\left(f\left(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k\right)\right) \right], \quad k = 0, \dots, N-1$$

for which the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0(\mathbf{x}_0)$ and the optimal policy is constructed by setting

$$\pi_{k}^{*}\left(\boldsymbol{x}_{k}\right) = \underset{\boldsymbol{u}_{k} \in U\left(\boldsymbol{x}_{k}\right)}{\operatorname{argmin}} \mathbb{E}_{w_{k}}\left[g_{k}\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) + J_{k+1}\left(f\left(\boldsymbol{x}_{k}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right)\right)\right]$$

Next time

- Stochastic Dynamic Programming
- Infinite-Horizon MDPs
- Value Iteration
- Policy Iteration