
AA 203
Optimal and Learning-Based Control

Direct methods

Spencer M. Richards

Autonomous Systems Laboratory, Stanford University

April 12, 2023
(last updated May 3, 2023)

1



Course overview

2



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

3



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

4



Optimal control problem (continuous-time)

Consider the continuous-time optimal control problem (OCP)

minimize
x,u

ℓT (x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt cost (terminal + stage)

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ] dynamical feasibility
x(0) = x0 initial condition
x(T ) ∈ XT terminal condition
u(t) ∈ U , ∀t ∈ [0, T ] input constraints

An optimal control u∗(t) for a specific initial state x0 is an open-loop input.

An optimal control of the form u∗(t) = π∗(t, x(t)) is a closed-loop input.

5



Review: Indirect methods

Use the PMP (i.e., first-order NOCs) to construct a BVP of the form(
ẋ∗

ṗ∗

)
=

(
f(t, x∗, u∗(t))

− ∇x Hη(t, x∗, u∗(t), p∗)

)
u∗(t) = arg max

u∈U
Hη(t, x∗(t), u, p∗(t))

x∗(0) = x0

h(T, x∗(T ), p∗(T )) = 0

where h(T, x∗(T ), p∗(T )) ∈ Rn if T is fixed, or h(T, x∗(T ), p∗(T )) ∈ Rn+1 if T is free.

The boundary conditions are determined by x∗(0) = x0, x∗(T ) ∈ XT , the transversality
condition, and the boundary condition on the Hamiltonian (for free final time).

In indirect single shooting, we guess p∗(0) and possibly T , solve the resulting IVP, then apply a
root-finding method to the boundary condition h(T, x∗(T ), p∗(T )) = 0.

In indirect multiple shooting, we “shoot” from many different times {tk}N−1
k=0 ⊂ [0, T ) with

t0 = 0 to form a sparse system of equations, then apply a root-finding method.

6



Direct methods

In direct methods, we transcribe the OCP into a finite-dimensional nonlinear optimization
problem that we then solve directly with nonlinear programming.

minimize
x,u

ℓT (x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ]
x(0) = x0

x(T ) ∈ XT

u(t) ∈ U , ∀t ∈ [0, T ]


=⇒


minimize

z∈S⊆Rd
f(z)

subject to h(z) = 0
g(z) ⪯ 0

Each direct method uses some manner of transcription, which also determines what z, h, g,
and S represent.

7



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

8



Direct multiple shooting via zero-order hold control

Construct u as piecewise constant over t ∈ [0, T ] with N intervals, i.e.,

u(t) = u(tk), ∀t ∈ [tk, tk+1), ∀k ∈ {0, 1, . . . , N − 1},

with t0 = 0 and tN = T . This is known as a zero-order hold for u, as it is piecewise-C0.

Approximate the true discrete-time dynamics, i.e., enforce

x(tk+1) = x(tk) +
∫ tk+1

tk

f(t, x(t), uk) dt︸ ︷︷ ︸
“solve this IVP numerically”

≈ fd(tk, tk+1, x(tk), u(tk))

For example, use Euler integration, i.e.,

fd(tk, tk+1, x(tk), u(tk)) := x(tk) + (tk+1 − tk)f(tk, x(tk), u(tk)),

or a Runge-Kutta scheme.

9



Direct multiple shooting via zero-order hold control

The resulting discretized OCP is

minimize
x,u

ℓT (x(tN )) +
N−1∑
k=0

(tk+1 − tk)ℓ(tk, x(tk), u(tk))

subject to x(tk+1) = fd(tk, tk+1, x(tk), u(tk)), ∀k ∈ {0, 1, . . . , N − 1}
x(t0) = x0

x(tN ) ∈ XT

u(tk) ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

This is a nonlinear program with decision variable

z :=
(
{x(tk)}N

k=0, {u(tk)}N−1
k=0

)
∈ RNn+(N−1)m.

10



Direct multiple shooting via zero-order hold control (time-optimal)

For time-optimal problems, introduce T ≥ 0 as a variable and define

tk = k

N
T, ∀k ∈ {0, 1, . . . , N}.

The resulting discretized time-optimal OCP is then

minimize
x,u,T ≥0

ℓT (x(tN )) +
N−1∑
k=0

T

N
ℓ(tk, x(tk), u(tk))

subject to x(tk+1) = fd(tk, tk+1, x(tk), u(tk)), ∀k ∈ {0, 1, . . . , N − 1}
x(t0) = x0

x(tN ) ∈ XT

u(tk) ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

This is a nonlinear program with decision variable

z :=
(
{x(tk)}N

k=0, {u(tk)}N−1
k=0 , T

)
∈ RNn+(N−1)m+1.

11



Limitations of direct multiple shooting

While the transcription in direct multiple shooting is straightforward,

we do not have a parameterization of x(t) for all t ∈ [0, T ],
we are limited to piecewise-constant u, and
we rely on explicit numerical differentiation of the dynamics (which might compose f
multiple times in higher-order schemes).

The last point can cause computational bottlenecks when nonlinear solvers must compute
gradients of terms in the transcribed problem. For example, a fourth-order Runge-Kutta
scheme (i.e., RK4) would compose f with itself 3 times.

12



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

13



Direct collocation (Hermite-Simpson)

Suppose we construct x(t) to be a continuous cubic spline, i.e.,

x(t) = ck0 + τk(t)ck1 + τk(t)2ck2 + τk(t)3ck3, ∀t ∈ [tk, tk+1].

for each k ∈ {0, 1, . . . , N − 1}, where ckd ∈ Rn for d ∈ {0, 1, 2, 3} and

τk(t) := t − tk

∆tk
∈ [0, 1], ∆tk := tk+1 − tk > 0.

Then
ẋ(t) = 1

∆tk
ck1 + 2

∆tk
τk(t)ck2 + 3

∆tk
τk(t)2ck3, ∀t ∈ [tk, tk+1].

Substituting in t = tk and t = tk+1 for x(t) and ẋ(t) yields the linear system
x(tk)
ẋ(tk)

x(tk+1)
ẋ(tk+1)

 =


I 0 0 0
0 ∆t−1

k I 0 0
I I I I
0 ∆t−1

k I 2∆t−1
k I 3∆t−1

k I




ck0
ck1
ck2
ck3


14



Direct collocation (Hermite-Simpson)

Substituting in t = tk and t = tk+1 for x(t) and ẋ(t) yields the linear system
x(tk)
ẋ(tk)

x(tk+1)
ẋ(tk+1)

 =


I 0 0 0
0 ∆t−1

k I 0 0
I I I I
0 ∆t−1

k I 2∆t−1
k I 3∆t−1

k I




ck0
ck1
ck2
ck3


Solving this system and using ẋ = f(t, x, u) gives us

ck0
ck1
ck2
ck3

 =


I 0 0 0
0 ∆tkI 0 0

−3I −2∆tkI 3I −∆tkI
2I ∆tkI −2I ∆tkI




x(tk)
f(tk, x(tk), u(tk))

x(tk+1)
f(tk+1, x(tk+1), u(tk+1))


So if we determine (x(tk), u(tk)) for each k ∈ {0, 1, . . . , N}, then we can solve for the spline
coefficients to get an explicit parameterization of x(t) over t ∈ [0, T ].

15



Direct collocation (Hermite-Simpson)

We have not yet enforced the dynamics constraints

x(t) = x(tk) +
∫ t

tk

f(s, x(s), u(s)) ds, ∀t ∈ [tk, tk+1).

It is infeasible to enforce this at every time along each
spline segment. We choose to enforce this constraint
at only a single time t̄k ∈ [tk, tk+1) for each segment.
Altogether, {t̄k}N−1

k=0 are called collocation points.

Specifically, we choose the segment midpoints t̄k := 1
2 (tk + tk+1), which gives us

x(t̄k) = 1
2(x(tk) + x(tk+1)) + ∆tk

8 (f(tk, x(tk), u(tk)) − f(tk+1, x(tk+1), u(tk+1)))

ẋ(t̄k) = − 3
2∆tk

(x(tk) − x(tk+1)) − 1
4(f(tk, x(tk), u(tk)) + f(tk+1, x(tk+1), u(tk+1)))

16



Direct collocation (Hermite-Simpson)

The resulting discretized OCP is

minimize
x,u

ℓT (x(tN )) +
N−1∑
k=0

(tk+1 − tk)ℓ(tk, x(tk), u(tk))

subject to ẋ(t̄k) = f(t̄k, x(t̄k), u(t̄k)), ∀k ∈ {0, 1, . . . , N − 1}
x(t0) = x0

x(tN ) ∈ XT

u(tk) ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

where the dynamics f are composed only once, since

x(t̄k) = 1
2(x(tk) + x(tk+1)) + ∆tk

8 (f(tk, x(tk), u(tk)) − f(tk+1, x(tk+1), u(tk+1)))

ẋ(t̄k) = − 3
2∆tk

(x(tk) − x(tk+1)) − 1
4(f(tk, x(tk), u(tk)) + f(tk+1, x(tk+1), u(tk+1)))

We have u(t̄k) = u(tk) if u is piecewise-constant. Alternatively, we can set u as
piecewise-linear to get u(t̄k) = 1

2 (u(tk) + u(tk+1)).
17



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

18



Sequential convex programming (SCP)

Consider the non-convex problem

minimize
z∈Rd

f(z)

subject to h(z) = 0
g(z) ⪯ 0

The basic idea of SCP is to iteratively solve for z(k) via the convex sub-problem

minimize
z∈Rd

f̂ (k)(z)

subject to ĥ(k)(z) := Â(k)z − b̂(k) = 0
ĝ(k)(z) ⪯ 0
z ∈ T (k) := {z ∈ Rd | ∥z − z(k)∥∞ ≤ ρ(k)}

where (f̂ (k), ĝ(k)) and ĥ(k) are convex and affine, respectively, approximations of (f, g) and h,
respectively, over a convex trust region T (k) around z(k) for some ρ(k) > 0.

19



SCP for OCPs

Consider the discrete-time OCP

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
x0 = x̄0

xT ∈ XT

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

Often we can assume XT and U are convex sets (e.g., polyhedra and norm balls). We also are
often interested in convex cost functions, e.g.,

ℓT (xT ) = xT
T QT xT , ℓ(t, xt, ut) = xT

t Qtxt + uT
t Rtut,

where QT ≻ 0, Qt ≻ 0, and Rt ≻ 0.

20



SCP for OCPs

Consider the discrete-time OCP

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
x0 = x̄0

xT ∈ XT

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

Assume XT and U are convex sets, and ℓT and ℓ are convex in xT and (xt, ut), respectively.
Then the remaining non-convexity is due to the nonlinear dynamics constraints.

21



SCP for OCPs

Let {x
(k)
t }T

t=0 and {u
(k)
t }T −1

t=0 represent our current solution iterate. Linearize the dynamics
around this iterate to get the estimate

f̂ (k)(t, xt, ut) := f(t, x
(k)
t , u

(k)
t ) + ∂f

∂x
(t, x

(k)
t , u

(k)
t )(xt − x

(k)
t ) + ∂f

∂u
(t, x

(k)
t , u

(k)
t )(ut − u

(k)
t )

which allows us to construct the convex OCP

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f̂ (k)(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
x0 = x̄0

xT ∈ XT

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

∥xt − x
(k)
t ∥∞ ≤ ρ(k)

x , ∀t ∈ {0, 1, . . . , T − 1}

∥ut − u
(k)
t ∥∞ ≤ ρ(k)

u , ∀t ∈ {0, 1, . . . , T − 1}

22



Agenda

1. Indirect versus direct methods

2. Direct multiple shooting

3. Direct collocation

4. Sequential convex programming

5. Direct methods in practice

23



Direct methods in practice

“As you begin to play with these algorithms on your own problems, you might feel like you’re
on an emotional roller-coaster.” - Russ Tedrake, Underactuated Robotics

In general, there are no guarantees for solving nonlinear optimization problems. You can
converge to a bad local minimum, or not at all.

You may need to spend some time tuning, e.g., your cost function and trust region radii, or
perhaps adding slack variables.

It is also a good idea to try “warm-starting” your initial guess in SCP with the solution to an
easier problem (e.g., one with looser constraints).

24

http://underactuated.mit.edu/trajopt.html


Next class

Dynamic programming
(i.e., optimal closed-loop control via recursion)

25


	Indirect versus direct methods
	Direct multiple shooting
	Direct collocation
	Sequential convex programming
	Direct methods in practice

