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Review: First-order NOCs

minimize
x∈Rn

f(x)

subject to h(x) = 0
g(x) ⪯ 0

L(x, λ, µ) := f(x) + λTh(x) + µTg(x)

Theorem (First-order NOCs)
Suppose x∗ ∈ Rn is a local minimum of f ∈ C1(Rn,R) subject to h(x∗) = 0 and g(x∗) ⪯ 0
with h ∈ C1(Rn,Rm) and g ∈ C1(Rn,Rr). Moreover, assume

{∇hi(x∗)}m
i=1 ∪ {∇gj(x∗)}j∈Ag(x∗)

are linearly independent. Then there exist unique λ∗ ∈ Rm and µ∗ ∈ Rr such that

∇x L(x∗, λ∗, µ∗) = 0, µ∗ ⪰ 0, µ∗
j = 0, ∀j /∈ Ag(x∗),

The assumption on the constraint gradients is known as the linear independence constraint
qualification (LICQ). 4



Geometry of first-order NOCs
Tangent cone TX (x) “vectors that stay in X ”
Normal cone NX (x) “vectors that leave X ”

If x∗ is a local minimum of f over X , then
− ∇f(x∗) ∈ NX (x∗), i.e., there is no feasible com-
ponent of − ∇f(x∗) that would allow us to locally
decrease f(x∗).

For convenience, we write “− ∇f(x∗) ⊥x∗ X ”. In
other literature, you may see “− ∇f(x∗) ⊥ TX (x∗)”.

If X = {x ∈ Rn | h(x) = 0, g(x) ⪯ 0} and the LICQ holds at x∗ ∈ X , then

TX (x∗) =
{

d ∈ Rn | ∂h

∂x
(x∗)d = 0, ∇gj(x∗)Td ≤ 0, ∀j ∈ Ag(x∗)

}
NX (x∗) =

{
v ∈ Rn | v = ∂h

∂x
(x∗)Tλ + ∂g

∂x
(x∗)Tµ, µ ⪰ 0, µj = 0, ∀j /∈ Ag(x∗)

}
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Example: A problem with linearly dependent constraints

minimize
x∈R2

f(x) := x1 + x2

subject to h1(x) := (x1 − 1)2 + x2
2 − 1 = 0

h2(x) := (x1 − 2)2 + x2
2 − 4 = 0

At the only feasible point x∗ = 0, we have

∇f(x∗) = (1, 1)
∇h1(x∗) = (−2, 0), ∇h2(x∗) = (−4, 0)

The constraint gradients are linearly dependent (i.e., the LICQ does not hold), so we cannot
write ∇f(x∗) + λ∗

1 ∇h1(x∗) + λ∗
2 ∇h2(x∗) = 0.

In essence, the constraints “pinch together” so that just one x∗ is feasible, regardless of the
objective value.
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Fritz John first-order NOCs

Theorem (Fritz John first-order NOCs)
Let f ∈ C1(Rn,R), h ∈ C1(Rn,Rm), and g ∈ C1(Rn,Rr). Suppose x∗ ∈ Rn is a local
minimum of the problem

minimize
x∈S

f(x)

subject to h(x) = 0
g(x) ⪯ 0

.

Then there exist (η, λ∗, µ∗) ∈ {0, 1} × Rm × Rr such that

(η, λ∗, µ∗) ̸= 0 non-triviality
− ∇x Lη(x∗, λ∗, µ∗) ⊥x∗ S stationarity

µ∗
j ≥ 0, µ∗

j gj(x∗) = 0, ∀j ∈ {1, 2, . . . , r} complementarity

where Lη(x, λ, µ) is the partial Lagrangian

Lη(x, λ, µ) := ηf(x) + λTh(x) + µTg(x).
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Fritz John first-order NOCs

Theorem (Fritz John first-order NOCs)
If x∗ is a local minimum, there exist
(η, λ∗, µ∗) ∈ {0, 1} × Rm × Rr such that

(η, λ∗, µ∗) ̸= 0
− ∇x Lη(x∗, λ∗, µ∗) ⊥x∗ S

µ∗
j ≥ 0, µ∗

j gj(x∗) = 0, ∀j ∈ {1, 2, . . . , r}

where Lη(x, λ, µ) is the partial Lagrangian

Lη(x, λ, µ) := ηf(x) + λTh(x) + µTg(x).

The “abnormal case” η = 0 yields necessary conditions independent of the objective f .

Corollary
If S = Rn and the LICQ holds, then η = 1 and ∇x L1(x∗, λ∗, µ∗) = 0.
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Course overview
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Optimal control problem (discrete-time)

Consider the discrete-time optimal control problem (OCP)

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut) cost (terminal + stage)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1} dynamical feasibility
x0 = x̄0 initial condition
xT ∈ XT terminal condition
ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1} input constraints

An optimal control u∗ = {u∗
t }T −1

t=0 for a specific initial state x̄0 is an open-loop input.

An optimal control of the form u∗
t = π∗(t, xt) is a closed-loop input.
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Lagrangian, Hamiltonian, and the adjoint equation (discrete-time)

The partial Lagrangian is

Lη(x, u, p) = ηℓT (xT ) + pT
0 (x0 − x̄0)︸ ︷︷ ︸

initial condition

+
T −1∑
t=0

(
ηℓ(t, xt, ut) + pT

t+1(xt+1 − f(t, xt, ut))︸ ︷︷ ︸
dynamical feasibility

)

= ηℓT (xT ) + pT
0 (x0 − x̄0) +

T −1∑
t=0

(
pT

t+1xt+1 − Hη(t, xt, ut, pt+1)
) ,

with normality η ∈ {0, 1}, Lagrange multipliers {pt}T
t=0 ⊂ Rn, and Hamiltonian

Hη(t, x, u, p) := pTf(t, x, u) − ηℓ(t, x, u).

Setting ∇xt
L(x∗, u∗) = 0 for t ∈ {0, 1, . . . , T − 1} yields

p∗
t = ∇x Hη(t, x∗

t , u∗
t , p∗

t+1), ∀t ∈ {0, 1, . . . , T − 1},

which is a backwards recursion for the adjoint or co-state p∗
t .
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Transversality and the maximum condition (discrete-time)

The partial Lagrangian is

Lη(x, u, p) = ηℓT (xT ) + pT
0 (x0 − x̄0) +

T −1∑
t=0

(
pT

t+1xt+1 − Hη(t, xt, ut, pt+1)
)

where we left out xT ∈ XT and ut ∈ U . Setting − ∇xT
Lη(x∗, u∗) ⊥x∗

T
XT yields the

transversality condition
−p∗

T − η ∇ℓT (x∗
T ) ⊥x∗

T
XT ,

and setting − ∇ut L(x∗, u∗) ⊥u∗
t

U yields the weak maximum condition

∇u Hη(t, x∗
t , u∗

t , p∗
t+1) ⊥u∗

t
U , ∀t ∈ {0, 1, . . . , T − 1}.

We refer to this condition as “weak” since it is a necessary, but not sufficient condition for a
solution of the problem

maximize
u∈U

Hη(t, x∗
t , u, p∗

t+1).
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Pontryagin maximum principle (discrete-time)

Collect these necessary conditions together to get the Pontryagin maximum principle (PMP).

Theorem (Pontryagin maximum principle (discrete-time))
Let (x∗, u∗) be a local minimum of the discrete-time OCP with terminal set XT and control
set U . Then η ∈ {0, 1} and {p∗

t }T
t=0 ⊂ Rn exist such that

(η, p∗
0, p∗

1, . . . , p∗
T ) ̸= 0 non-triviality

p∗
t = ∇x Hη(t, x∗

t , u∗
t , p∗

t+1), ∀t ∈ {0, 1, . . . , T − 1} adjoint equation

−p∗
T − η ∇ℓT (x∗

T ) ⊥x∗
T

XT transversality

∇u Hη(t, x∗
t , u∗

t , p∗
t+1) ⊥u∗

t
U , ∀t ∈ {0, 1, . . . , T − 1} maximum condition (weak)
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Optimal control problem (continuous-time)

Consider the continuous-time optimal control problem (OCP)

minimize
x,u

ℓT (x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt cost (terminal + stage)

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ] dynamical feasibility
x(0) = x0 initial condition
x(T ) ∈ XT terminal condition
u(t) ∈ U , ∀t ∈ [0, T ] input constraints

An optimal control u∗(t) for a specific initial state x0 is an open-loop input.

An optimal control of the form u∗(t) = π∗(t, x(t)) is a closed-loop input.
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Discretized OCPs

Consider piecewise continuous trajectories such that x(t) = x(tk) and u(t) = u(tk) for
t ∈ [tk, tk+1), with k ∈ {0, 1, . . . , N − 1}, t0 = 0 and tN = T .

Define ∆tk := tk+1 − tk such that ∆tk > 0 for all k ∈ {0, 1, . . . , N − 1}.

Consider the discretized OCP

minimize
x,u

ℓT (x(tN )) +
N−1∑
k=0

∆tkℓ(tk, x(tk), u(tk))

subject to x(tk+1) = x(tk) + ∆tkf(tk, x(tk), u(tk)), ∀k ∈ {0, 1, . . . , N − 1}
x(t0) = x0

x(tN ) ∈ XT

u(tk) ∈ U , ∀k ∈ {0, 1, . . . , N − 1}
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Discrete-time PMP as a heuristic for continuous-time OCPs

Use the discrete-time PMP on a local minimum (x∗, u∗) of the discretized OCP to get

(η, p(t0), p(t1), . . . , p(tN )) ̸= 0

− (p∗(tk+1) − p∗(tk))
∆tk

= ∇x Hη(tk, x∗(tk), u∗(tk), p∗(tk+1)), ∀k ∈ {0, 1, . . . , N − 1}

− p∗(tN ) − η ∇ℓT (x∗(tN )) ⊥x∗(tN ) XT

∇u Hη(tk, x∗(tk), u∗(tk), p∗(tk+1)) ⊥u∗
t

U , ∀k ∈ {0, 1, . . . , N − 1}

where we use the continuous-time Hamiltonian

Hη(t, x, u, p) := pTf(t, x, u) − ηℓ(t, x, u).
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Pontryagin maximum principle (continuous-time, weak)

The above conditions suggest the following continuous-time PMP as ∆tk → 0.

Theorem (Pontryagin maximum principle (continuous-time, weak))
Let (x∗, u∗) be a local minimum of the continuous-time optimal control problem with terminal
set XT and control set U . Then η ∈ {0, 1} and p∗ : [0, T ] → Rn exist such that

(η, p(t)) ̸≡ 0 non-triviality

−ṗ∗(t) = ∇x Hη(t, x∗(t), u∗(t), p∗(t)), ∀t ∈ [0, T ] adjoint equation

−p∗(T ) − η ∇ℓT (x∗(T )) ⊥x∗(T ) XT transversality

∇Hη(t, x∗(t), u∗(t), p∗(t)) ⊥u∗(t) U , ∀t ∈ [0, T ] maximum condition (weak)

“(η, p(t)) ̸≡ 0” means there exists at least one t ∈ [0, T ] such that (η, p(t)) ̸= 0.
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Norms in function spaces

Recall that (x∗, u∗) is a local minimum of J(x∗, u∗) if there exists ε > 0 such that
J(x∗, u∗) ≤ J(x, u) for all (x, u) in the ε-sized norm ball around (x∗, u∗).

In using the discrete-time PMP as a heuristic to obtain the continuous-time PMP, we are
implicitly using the C0-norm for both x∗ and u∗, i.e.,

∥x − x∗∥C0 := max
t∈[0,T ]

∥x(t) − x∗(t)∥, ∥u − u∗∥C0 := max
t∈[0,T ]

∥u(t) − u∗(t)∥.

We can strengthen the continuous-time PMP if we use the C0-norm for x∗ and the L1-norm
for u∗, i.e.,

∥x − x∗∥C0 := max
t∈[0,T ]

∥x(t) − x∗(t)∥, ∥u − u∗∥L1 :=
∫ T

0
∥u(t) − u∗(t)∥ dt.

21



Strengthening the maximum condition via needle perturbations

In general, the L1-norm ball for u∗ allows for large pointwise variations at each time t.
Suppose the control set U is bounded, i.e., ∥u − v∥ ≤ c for all u, v ∈ U and some c > 0.

Given some u∗ : [0, T ] → U , any τ ∈ [0, T ) and ε > 0 such that [τ, τ + ε) ⊂ [0, T ], and any
v ∈ U , define

u(t) =
{

v, t ∈ [τ, τ + ε)
u∗(t), t ∈ [0, τ) ∪ [τ + ε, T ]

This is a spatial needle perturbation of u∗(t). Then it can be shown that

∥u − u∗∥L1 :=
∫ T

0
∥u(t) − u∗(t)∥ dt =

∫ τ+ε

τ

∥v − u∗(t)∥ dt ≤
∫ τ+ε

τ

c dt = εc.

x(T ) ≈ x∗(T ) + εd, d ∈ TXT
(x∗(T ))

for small enough ε. Overall, a large spatial perturbation in u∗(t) can correspond to small
feasible perturbations to both x∗ and u∗.
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Pontryagin maximum principle (continuous-time)

The possibility of large spatial control perturbations still corresponding to “feasible neighbours”
of (x∗, u∗) suggests the following strengthened PMP.

Theorem (Pontryagin maximum principle (continuous-time))
Let (x∗, u∗) be a local minimum (using the C0-norm and L1-norm, respectively) of the
continuous-time OCP with terminal set XT and bounded control set U . Then η ∈ {0, 1} and
p∗ : [0, T ] → Rn exist such that

(η, p∗(t)) ̸≡ 0 non-triviality

−ṗ∗(t) = ∇x Hη(t, x∗(t), u∗(t), p∗(t)), ∀t ∈ [0, T ] adjoint equation

−p∗(T ) − η ∇ℓT (x∗(T )) ⊥x∗(T ) XT transversality

Hη(t, x∗(t), u∗(t), p∗(t)) = sup
u∈U

Hη(t, x∗(t), u, p∗(t)), ∀t ∈ [0, T ] maximum condition

A rigorous proof relies on variational calculus (Liberzon, 2012; Clarke, 2013).
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Example: Minimum fuel for a control-affine system

Consider the continuous-time OCP

minimize
x,u

∫ T

0

m∑
j=1

αj |uj(t)| dt

subject to ẋ(t) = a(t, x(t)) +
m∑

j=1
uj(t)bj(t, x(t)), ∀t ∈ [0, T ]

x(0) = x0

x(T ) = 0
− ū ⪯ u(t) ⪯ ū, ∀t ∈ [0, T ]

where ū ≻ 0. The Hamiltonian is

Hη(t, x, u, p) = pT

a(t, x) +
m∑

j=1
ujbj(t, x)

− η

m∑
j=1

αj |uj |
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Example: Minimum fuel for a control-affine system

The Hamiltonian is

Hη(t, x, u, p) = a(t, x)Tp +
m∑

j=1

(
ujbj(t, x)Tp − ηαj |uj |

)
The adjoint equation is

ṗ∗ = − ∇x Hη(t, x∗, u∗, p∗) = − ∂a

∂x
(t, x∗)p∗ −

m∑
j=1

u∗
j

∂bj

∂x
(t, x∗)p∗

The maximum condition is

u∗
j = arg max

uj∈[−ūj ,ūj ]

(
ujbj(t, x∗)Tp∗ − ηαj |uj |

)
=


−ūj , bj(t, x∗)Tp∗ < −ηαj

0, bj(t, x∗)Tp∗ ∈ [−ηαj , ηαj ]
ūj , bj(t, x∗)Tp∗ > ηαj

,

which for η = 1 is an example of “bang-off-bang” control.
25



Example: Minimum fuel for a control-affine system

Assume η = 1, i.e., the “normal” case. Altogether, we have the boundary value problem (BVP)

(
ẋ∗

ṗ∗

)
=
(

a(t, x∗) +
∑m

j=1 u∗
j bj(t, x∗)

− ∂a
∂x (t, x∗)p∗ −

∑m
j=1 u∗

j
∂bj

∂x (t, x∗)p∗

)
, u∗

j =


−ūj , bj(t, x∗)Tp∗ < −αj

0, bj(t, x∗)Tp∗ ∈ [−αj , αj ]
ūj , bj(t, x∗)Tp∗ > αj

,

with boundary conditions x∗(0) = x0 and x∗(T ) = 0.

Transversality did not factor into this problem, since the normal cone of the singleton
XT = {0} is just Rn (i.e., any direction “leaves” the terminal set).
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Indirect methods for optimal control

An indirect method generally focuses on solving the BVP(
ẋ∗

ṗ∗

)
=
(

f(t, x∗, u∗)
− ∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, h(x∗(T ), p∗(T )) = 0.

where h(x∗(T ), p∗(T )) ∈ Rn. The open-loop optimal control candidate u∗(t, x∗(t), p∗(t)) is
then extracted.

The boundary condition h(x∗(T ), p∗(T )) = 0 is determined by the terminal set constraint
x∗(T ) ∈ XT and the transversality condition −p∗(T ) − η ∇ℓT (x∗(T )) ⊥x∗(T ) XT .

We are implicitly assuming an optimal control exists. Even then, there may be multiple local
optima.
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Shooting methods

To solve the BVP(
ẋ∗

ṗ∗

)
=
(

f(t, x∗, u∗)
− ∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, h(x∗(T ), p∗(T )) = 0,

we consider the associated initial value problem (IVP)(
ẋ∗

ṗ∗

)
=
(

f(t, x∗, u∗)
− ∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, p∗(0) = p0.

We can integrate the IVP forward in time to get x∗(T ; p0) and p∗(T ; p0), which are
parameterized by p0.

We can use a root-finding method (e.g., bisection search, Newton-Raphson method) to find p0
such that h(x∗(T ; p0), p∗(T ; p0)) = 0. This is called single shooting and gives us a solution of
the BVP.
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Time-optimal control problems

Consider the continuous-time OCP

minimize
x,u,T ≥0

ℓT (T, x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt cost (terminal + stage)

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ] dynamical feasibility
x(0) = x0 initial condition
x(T ) ∈ XT terminal condition
u(t) ∈ U , ∀t ∈ [0, T ] input constraints

The final time T is now a free variable (subject to T ≥ 0).
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Time-optimal control problems

Use the change of variables t(s) = Ts with s ∈ [0, 1] to get

minimize
(x,t),(u,T )

ℓT (t(1), x(1)) + T

∫ 1

0
ℓ(t(s), x(s), u(s)) ds cost (terminal + stage)

subject to ẋ(s) = Tf(t(s), x(s), u(s)), ṫ(s) = T, ∀s ∈ [0, 1] dynamical feasibility
x(0) = x0, t(0) = 0 initial condition
x(1) ∈ XT terminal condition
u(s) ∈ U , T ∈ [0, ∞), ∀s ∈ [0, 1] input constraints

To derive a new form of the PMP for time-optimal problems, we apply the fixed final time
PMP to the problem above, where we treat t and T as a new state and input, respectively.

32



Deriving the time-optimal PMP

Applying the fixed final time PMP gives us the Hamiltonian

H̃η(s, x, t, u, T, p, λ) = T (H(t, x, u, p) + λ),

where H(t, x, u, p) is the usual Hamiltonian, and λ is the adjoint for the new ”state”
t(s) = Ts. Taking derivatives with respect to (x, t) yields the adjoint equations

dp∗

ds
= −T ∗∇xH(t, x∗, u∗, p∗), dλ∗

ds
= −T ∗ ∂H

∂t
(t, x∗, u∗, p∗),

which by the chain rule with dt
ds = T become

ṗ∗ = −∇xH(t, x∗, u∗, p∗), λ̇∗ = −∂H

∂t
(t, x∗, u∗, p∗).

Since t has no terminal constraint, we have the transversality conditions

−p∗(1) − η∇xℓT (t(1), x∗(1)) ⊥x∗(1) XT , −λ∗(1) − η∇T ℓT (t(1), x∗(1)) = 0.

which after using t = sT gives us

−p∗(T ) − η∇xℓT (T ∗, x∗(T )) ⊥x∗(T ) XT , −λ∗(T ∗) = η∇T ℓT (T ∗, x∗(T )).
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Deriving the time-optimal PMP

Applying the fixed final time PMP gives us the Hamiltonian

H̃η(s, x, t, u, T, p, λ) = T (H(t, x, u, p) + λ),

where H(t, x, u, p) is the usual Hamiltonian, and λ is the adjoint for the new ”state” t(s) = Ts

We are considering the absolute value norm for T , and [0, ∞) is unbounded. So we use the
maximum condition for u∗ and the weak maximum condition for T ∗ to get

∇T H̃η(t, x∗, u∗, p∗) ⊥T ∗ [0, ∞) =⇒ H(t, x∗, u∗, p∗) + λ∗ = 0,

where we have assumed T ∗ > 0 to get that the normal cone is just {0}. Evaluating this
condition at t = T ∗ gives us

H(T ∗, x∗(T ∗), u∗(T ∗), p∗(T ∗)) = −λ∗(T ∗) = η∇tℓT (T ∗, x∗(T )),

which is the additional boundary condition we need for free final time T ∗.
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Time-optimal PMP

Collecting all of the conditions we derived above gives us the free final time PMP.

Theorem (Pontryagin maximum principle (continuous-time, free final time))
Let (x∗, u∗, T ∗) be a local minimum (using the C0-norm, L1-norm, and absolute value,
respectively) of the continuous-time OCP with terminal set XT , bounded control set U , and
free final time T ≥ 0. Then η ∈ {0, 1} and p∗ : [0, T ∗] → Rn exist such that

(η, p∗(t)) ̸≡ 0 non-triviality

−ṗ∗(t) = ∇x Hη(t, x∗(t), u∗(t), p∗(t)), ∀t ∈ [0, T ∗] adjoint equation

−p∗(T ∗) − η ∇ℓT (T ∗, x∗(T ∗)) ⊥x∗(T ) XT transversality

Hη(t, x∗(t), u∗(t), p∗(t)) = sup
u∈U

Hη(t, x∗(t), u, p∗(t)), ∀t ∈ [0, T ∗] maximum condition

Hη(T ∗, x∗(T ∗), u∗(T ∗), p∗(T ∗)) = η
∂ℓT

∂T
(T ∗, x∗(T ∗))

maximum condition
(boundary)
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Next class

Direct methods for optimal control
(i.e., solving discretized optimal control problems directly)
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