
AA 203
Optimal and Learning-Based Control

Nonlinear optimization theory

Spencer M. Richards

Autonomous Systems Laboratory, Stanford University

April 5, 2023
(last updated May 3, 2023)

1

Optimization in many dimensions

1-D 2-D

N -D ∞-D
2

Agenda

1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization

3

Agenda

1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization

4

Unconstrained optimization

Given an objective function f : Rn → R, we denote an unconstrained nonlinear program with
the notation

minimize
x∈Rn

f(x).

We usually assume either f ∈ C1 (i.e., “continuously differentiable”) or f ∈ C2 (i.e., “twice
continuously differentiable”).

A solution candidate x∗ ∈ Rn can be a:
local minimum ∃ε > 0 : f(x∗) ≤ f(x), ∀x : ∥x− x∗∥ ≤ ε

global minimum f(x∗) ≤ f(x), ∀x ∈ Rn

If the inequality is strict, i.e., “<”, then x∗ is a strict unconstrained local/global minimum.
Any (strict) global minimum is also a (strict) local minimum.

There can be many minima, or none at all!

5

First-order necessary optimality condition

Let x∗ be a local minimum.

Suppose f ∈ C1. Then near x∗ we have must have

f(x∗ + ∆x)− f(x∗) ≈ ∇f(x∗)T∆x ≥ 0

For each i, take ∆x = δe(i) and ∆xi = −δe(i) for small δ > 0, where

e(i) := (0, . . . 0︸ ︷︷ ︸
i−1

, 1, 0, . . . 0) ∈ {0, 1}n.

Then we get
∂f

∂xi
(x∗)δ ≥ 0, − ∂f

∂xi
(x∗)δ ≥ 0 ⇐⇒ ∂f

∂xi
(x∗) = 0.

Overall, we have ∇f(x∗) = 0, i.e., x∗ must be a stationary point.
6

Second-order necessary optimality condition

Let x∗ be a local minimum.

Suppose f ∈ C2. Then near x∗ we have must have

f(x∗ + ∆x)− f(x∗) ≈ ∇f(x∗)T∆x + 1
2∆xT∇2f(x∗)∆x ≥ 0

We know ∇f(x∗) = 0, so we must have

1
2∆xT∇2f(x∗)∆x ≥ 0.

Since we can choose ∆x arbitrarily within an ε-sized ball around x∗, we must have
∇2f(x∗) ⪰ 0, i.e., the Hessian of f at x∗ is a positive semi-definite matrix.

7

Necessary optimality conditions (NOCs) for unconstrained problems

Theorem (NOCs for unconstrained problems)
Suppose x∗ ∈ Rn is an unconstrained local minimum of f : Rn → R.

If f ∈ C1 on an open set X ⊆ Rn containing x∗, then ∇f(x∗) = 0.

If f ∈ C2 on X , then ∇2f(x∗) ⪰ 0.

8

Sufficient optimality conditions (SOCs) for unconstrained problems

If ∇f(x∗) = 0 and ∇2f(x∗) ≻ 0, then

f(x∗ + ∆x)− f(x∗) ≈ 1
2∆xT∇2f(x∗)∆x > 0

for small ∆x.

Theorem (SOCs for unconstrained problems)
Suppose f ∈ C2(X ,R) on some open set X ⊆ Rn. If
x∗ ∈ X satisfies

∇f(x∗) = 0, ∇2f(x∗) ≻ 0,

then x∗ is an unconstrained strict local minimum of f .
We cannot just use ∇2f(x∗) ⪰ 0
due to saddle points.

9

Convex sets and convex functions
A set X ⊆ Rn is convex if

αx + (1− α)y ∈ X , ∀x, y ∈ X , ∀α ∈ [0, 1].

A function f : X → Rn is convex on X if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y),
∀x, y ∈ X , ∀α ∈ [0, 1].

If the inequality is strict, then f is strictly convex.

A function f ∈ C2 is convex on X if and only if ∇2f(x) ⪰ 0 for all x ∈ X . If ∇2f(x) ≻ 0 for
all x ∈ X , then f is strictly convex.

Important examples of convex functions for this course are:
Quadratic f(x) = xTQx (where Q ⪰ 0)

Affine f(x) = Ax + b (both convex and concave)

10

Unconstrained convex problems

Theorem (NOCs are SOCs for unconstrained convex problems)
Let f : X → R be a convex function over a convex set X ∈ Rn.

If x∗ ∈ X is local minimum of f , then it is also a global minimum over X .

If f is strictly convex, then there exists at most one global minimum of f over X .

Suppose additionally that X is open and f ∈ C1(X ,R). Then ∇f(x∗) = 0 if and only if
x∗ is a global minimum of f over X .

11

Agenda

1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization

12

Descent methods for unconstrained problems

Iterative descent methods start at an initial guess x(0), and try to successively generate vectors
{x(1), x(2), . . . } such that the objective decreases at each iteration, i.e.,

f(x(k+1)) ≤ f(x(k)), ∀k ∈ {0, 1, 2, . . . }.

The hope is that we can decrease f all the way to a minimum.

Consider the update rule
x(k+1) = x(k) + α(k)d(k),

where α(k) > 0 is the step-size and d(k) ∈ Rn is the descent direction. Then

f(x(k+1)) ≈ f(x(k)) + α(k)∇f(x(k))Td(k).

The goal is to choose α(k) > 0 and d(k) ∈ Rn such that this approximation is appropriate and
∇f(x(k))Td(k) < 0.

13

Gradient descent directions

Let d(k) = −D(k)∇f(xk), where D(k) ≻ 0. Then

f(x(k+1)) ≈ f(x(k)) + α(k)∇f(x(k))Td(k)

= f(x(k))− α(k)∇f(x(k))TD(k)∇f(x(k))
.

Since D(k) ≻ 0, we have that f(x(k+1)) ≤ f(x(k)) for small enough α(k) > 0.

Popular choices for the descent scaling D(k) are
steepest D(k) = I.
Newton D(k) = ∇2f(x(k))−1, provided that the inverse exists.

The Newton descent direction analytically minimizes the quadratic approximation

f(x(k+1)) ≈ f(x(k)) +∇f(x(k))Td(k) + 1
2d(k)T

∇2f(x(k))d(k)

at each iteration k, assuming ∇2f(x(k)) is invertible.
14

Selecting the step-size

Constant Choose α(k) ≡ α > 0. Convergence can be slow, or the iterates could diverge if
α is too large.

Diminishing Ensure α(k) → 0 and
∑∞

k=0 α(k) =∞. This does not guarantee descent at
each iteration, but it can avoid diverging iterates.

Line search Given the current iterate x(k) and a descent direction d(k), compute

α(k) = arg min
α>0

f(x(k) + αd(k))

exactly if possible. Otherwise, do backtracking line search
initialize α(k) = 1
while f(x(k) + αd(k)) > f(x(k)) + γα(k)∇f(x(k))Td(k)

α(k) ← βα(k)

where γ ∈ (0, 0.5) and β ∈ (0, 1) are hyperparameters.

15

Further topics to explore

There is a wealth of mathematical analyses of descent methods involving:
guarantees for convergence to a stationary point
good convergence criteria (e.g., ∥x(k) − x(k−1)∥ < ε, |f(x(k))− f(x(k−1))| < ε,
∥∇f(x(k))∥ < ε)
convergence rates (e.g., f(x(k))− f(x∗) ≲ 1

k∥x
(0) − x∗∥2

2)

There are other descent methods that can be implemented “derivative-free”, such as
coordinate descent
Nelder-Mead algorithms

16

Agenda

1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization

17

Equality-constrained optimization

Given an objective function f : Rn → R and a constraint function h : Rn → Rm, we denote an
equality-constrained nonlinear program with the notation

minimize
x∈Rn

f(x)

subject to h(x) = 0

We assume f ∈ C1(Rn,R) and h ∈ C1(Rn,Rm).

18

Lagrange multipliers for equality-constrained problems

Define the Lagrangian function

L(x, λ) := f(x) + λTh(x) = f(x) +
m∑

i=1
λihi(x),

where λ ∈ Rm is a vector of Lagrange multipliers.

Theorem (First-order NOC for equality-constrained problems)
Suppose x∗ ∈ Rn is a local minimum of f ∈ C1(Rn,R) subject to h(x∗) = 0 with
h ∈ C1(Rn,Rm). Moreover, assume {∇hi(x∗)}m

i=1 are linearly independent. Then there exists
a unique λ∗ ∈ Rm such that

∇x L(x∗, λ∗) = ∇f(x∗) +
m∑

i=1
λ∗

i ∇hi(x∗) = 0.

Second-order NOCs and SOCs for constrained problems are discussed in AA203-Notes and
(Bertsekas, 2016).

19

https://github.com/StanfordASL/AA203-Notes

First-order NOC visualized

Re-arrange ∇x L(x∗, λ∗) = 0 to get

−∇f(x∗) =
m∑

i=1
λ∗

i ∇hi(x∗).

Further reduction of the objective value
would produce a change in the constraint
function, thereby violating h(x) = 0.

20

Regularity conditions for equality-constrained problems

The first-order NOC required that x∗ is a regular point, i.e., that {∇hi(x∗)}m
i=1 are linearly

independent vectors. Since ∇hi(x∗) ∈ Rn, this implicitly requires m ≤ n (i.e., you cannot find
more than n linearly independent vectors in Rn).

Solving minx : h(x)=0 f(x) can be viewed as solving for n variables subject to m constraints.

The proof of the first-order NOC relies on eliminating m variables to arrive at an unconstrained
problem in n−m variables, which in turn relies on {∇hi(x∗)}m

i=1 being linearly independent to
apply the implicit function theorem.

See (Bertsekas, 2016, §4.1.2) for further details.

21

Agenda

1. Unconstrained optimization

2. Descent methods for unconstrained problems

3. Equality-constrained optimization

4. Inequality-constrained optimization

22

Inequality-constrained optimization

Given an objective function f : Rn → R and constraint functions h : Rn → Rm and
g : Rn → Rr, we denote an inequality-constrained nonlinear program with the notation

minimize
x∈Rn

f(x)

subject to h(x) = 0
g(x) ⪯ 0

We assume f ∈ C1(Rn,R), h ∈ C1(Rn,Rm), and g ∈ C1(Rn,Rr). We use “⪯” to denote
element-wise inequality in this scenario.

For any feasible point x, i.e., such that h(x) = 0 and g(x) ⪯ 0, define the set of active
inequality constraints by

Ag(x) := {j ∈ {1, 2, . . . , r} | gj(x) = 0}.

23

Karush-Kuhn-Tucker (KKT) NOC conditions

With Lagrangian multipliers λ ∈ Rm and µ ∈ Rr, define the Lagrangian

L(x, λ, µ) := f(x) + λTh(x) + µTg(x) = f(x) +
m∑

i=1
λihi(x) +

r∑
j=1

µjgj(x).

Theorem (First-order NOC for inequality-constrained problems)
Suppose x∗ ∈ Rn is a local minimum of f ∈ C1(Rn,R) subject to h(x∗) = 0 and g(x∗) ⪯ 0
with h ∈ C1(Rn,Rm) and g ∈ C1(Rn,Rr). Moreover, assume

{∇hi(x∗)}m
i=1 ∪ {∇gj(x∗)}j∈Ag(x∗)

are linearly independent. Then there exist unique λ∗ ∈ Rm and µ∗ ∈ Rr such that

∇x L(x∗, λ∗, µ∗) = 0, µ∗ ⪰ 0, µ∗
j = 0, ∀j /∈ Ag(x∗).

We can also write the last condition succinctly as µ∗Tg(x∗) = 0.
24

KKT conditions for convex problems

Consider when f is convex, each gj(x) is convex, and h(x) is affine, i.e., h(x) = Ax− b. Then
we have

minimize
x∈Rn

f(x)

subject to Ax = b

g(x) ⪯ 0

for which the feasible set X := {x ∈ Rn | Ax = b, g(x) ⪯ 0} is convex.

Theorem (KKT conditions are NOCs and SOCs for convex problems)
Suppose f ∈ C1(Rn,R) and g ∈ C1(Rn,Rr) are convex, and that there exists at least one
strictly feasible point x ∈ X , i.e., Ax = b and g(x) ≺ 0. Then (x∗, λ∗, µ∗) describe a global
minimum if and only if

Ax∗ = b, g(x∗) ⪯ 0, ∇x L(x∗, λ∗, µ∗) = 0, µ∗ ⪰ 0, µ∗Tg(x∗) = 0.

25

Example: Maximal rectangle inside a circle

maximize x1 + x2

subject to x2
1 + x2

2 = r2

We have f(x) = −x1 − x2 (for minimization) with h(x) = x2
1 + x2

2 − r2, so

L(x, λ) = −x1 − x2 + λ(x2
1 + x2

2 − r2).

The first-order NOC at a local minimum (x∗, λ∗) is

∇x L(x∗, λ∗) =
(
−1 + 2λ∗x∗

1
−1 + 2λ∗x∗

2

)
!= 0 ⇐⇒ x∗

1 = x∗
2 = 1

2λ∗ .

Substitute into x∗
1

2 + x∗
2

2 = r2 to get λ∗ = ± 1√
2r

=⇒ x∗
1 = x∗

2 = ± 1√
2 r.

Of the two possible solutions, x∗
1 = x∗

2 = 1√
2 r is the global maximum (i.e., a square).

26

Optimality conditions in algorithm design

Why should we care about characterizing optimality conditions?

Even just NOCs can form a filter for distilling local minima from feasible points.

NOCs and SOCs can serve as a means for “measuring progress” towards optimality during
an optimization procedure, particularly for convex problems.

Problem structure (e.g., quadratic objective with linear constraints) coupled with
convexity and the KKT conditions can be leveraged to implement efficient solvers with
good convergence properties (Boyd and Vandenberghe, 2004).

Even for non-convex problems, convex solvers can be used in iterative convex
sub-problems that can converge to a local minimum.

27

Preview: Sequential Convex Programming (SCP)

Consider the non-convex problem

minimize
x∈Rn

f(x)

subject to h(x) = 0, g(x) ⪯ 0

The basic idea of sequential convex programming (SCP) is to maintain an estimate x(k) and
iteratively solve for x(k+1) via the convex sub-problem

minimize
x∈Rn

f̂ (k)(x)

subject to ĥ(k)(x) := Â(k)x− b̂(k) = 0, ĝ(k)(x) ⪯ 0, x ∈ T (k)

where (f̂ (k), ĝ(k)) and ĥ(k) are convex and affine, respectively, approximations of (f, g) and h,
respectively, over a convex trust region constructed around x(k), e.g.,

T (k) := {x | ∥x− x(k)∥∞ ≤ ρ},

for some ρ > 0.
28

Next class

Pontryagin’s maximum principle and indirect methods for optimal control
(i.e., applying NOCs to optimal control problems)

29

References

D. Bertsekas. Nonlinear Programming. Athena Scientific, 3 edition, 2016.
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

30

	Unconstrained optimization
	Descent methods for unconstrained problems
	Equality-constrained optimization
	Inequality-constrained optimization
	References

