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Optimization in many dimensions
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1. Unconstrained optimization



Unconstrained optimization

Given an objective function f : R™ — R, we denote an unconstrained nonlinear program with
the notation

minimize f(z).

We usually assume either f € C* (i.e., “continuously differentiable”) or f € C? (i.e., “twice
continuously differentiable”).

A solution candidate z* € R™ can be a:
local minimum Je > 0: f(z*) < f(z), Vo : ||z —z*|| < e
global minimum f(z*) < f(z), Yo € R"

If the inequality is strict, i.e., “<”, then x* is a strict unconstrained local/global minimum.
Any (strict) global minimum is also a (strict) local minimum.

There can be many minima, or none at all!



First-order necessary optimality condition

Let * be a local minimum.

Suppose f € C!. Then near z* we have must have

flz* +Az) — f(z*) = Vf(z*)TAz >0

For each i, take Az = de'? and Az; = —deD for small § > 0, where

e :=(0,...0,1,0,...0) € {0,1}".
——

i—1
Then we get
of , . of , . of .
> — > =0.
Bxi(x)é_o’ axi@)é—O{:’axi(l«) 0

Overall, we have V f(x*) =0, i.e., * must be a stationary point.



Second-order necessary optimality condition

Let 2* be a local minimum.
Suppose f € C2. Then near z* we have must have
flz* + Az) — f(z*) = Vf(z*)T Az + %AajT V2f(z*)Az >0
We know V f(z*) = 0, so we must have
%Agc-r V2f(z*)Az > 0.

Since we can choose Az arbitrarily within an e-sized ball around z*, we must have
V2f(x*) = 0, i.e., the Hessian of f at 2* is a positive semi-definite matrix.



Necessary optimality conditions (NOCs) for unconstrained problems

Theorem (NOCs for unconstrained problems)

Suppose x* € R™ is an unconstrained local minimum of f : R™ — R.
o If f € C' on an open set X C R™ containing z*, then V f(z*) = 0.

o If f€C? on X, then V2f(x*) = 0.



Sufficient optimality conditions (SOCs) for unconstrained problems

If Vf(z*) =0 and V2f(z*) > 0, then

f@™ + Ax) — f(a7) =

for small Ax.

Theorem (SOCs for unconstrained problems)

Suppose f € C?(X,R) on some open set X C R™. If
x* € X satisfies

V(') =0, V*f(z*) -0,

0
z 1/2
then z* is an unconstrained strict local minimum of f. '
We cannot just use V2f(z*) = 0

due to saddle points.



Convex sets and convex functions

A set X C R" is convex if

az+ (1—a)y e X, Yo,y € X, Va € [0,1].

A function f : X — R" is convex on X if | |
flaz+ (1 —a)y) < af(z)+ (1 —a)f(y), < O p /

Va,y € X, Ya € [0,1].

Yes! No
If the inequality is strict, then f is strictly convex.

A function f € C? is convex on X if and only if V2f(z) = 0 for all z € X. If V2f(z) = 0 for
all z € X, then f is strictly convex.

Important examples of convex functions for this course are:
Quadratic f(z) = 2" Qx (where Q = 0)
Affine f(xz) = Az + b (both convex and concave)
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Unconstrained convex problems

Theorem (NOCs are SOCs for unconstrained convex problems)

Let f : X — R be a convex function over a convex set X € R™.

e Ifx* € X is local minimum of f, then it is also a global minimum over X .
o If f is strictly convex, then there exists at most one global minimum of f over X.

e Suppose additionally that X is open and f € C'(X,R). Then V f(x*) = 0 if and only if
x* is a global minimum of f over X.
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2. Descent methods for unconstrained problems
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Descent methods for unconstrained problems

Iterative descent methods start at an initial guess z(°), and try to successively generate vectors
{x(l),x@), ... } such that the objective decreases at each iteration, i.e.,

Fa®D)y < f2®), VE € {0,1,2,...}.
The hope is that we can decrease f all the way to a minimum.

Consider the update rule
k1) = 2(k) 4 o (k) g(k)

where %) > 0 is the step-size and d*) € R™ is the descent direction. Then
F(@ D) x f(2®)) 4 B v f (R Tg®),
The goal is to choose a*) > 0 and d*) € R™ such that this approximation is appropriate and

V() Ta®) <o,
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Gradient descent directions

Let d®) = —D®) ¥ f(2*), where D*) = 0. Then

f(x(k+1)) ~ f(x(k)) +a® Vf(x(k))Td(k)
= (™) = o™ V()T DE v f(2F))

Since D) = 0, we have that f(z*+1)) < f(z®)) for small enough a®*) > 0.

Popular choices for the descent scaling D*) are
steepest D) = T.
Newton D®) = V2 f(z()) ™" provided that the inverse exists.

The Newton descent direction analytically minimizes the quadratic approximation
1
F® D) = fa®) 4 V) Ta® 4 5d(k)T V2 f(z*))ad®

at each iteration k, assuming V2 f(2(®)) is invertible.
14



Selecting the step-size

Constant Choose a®) = o > 0. Convergence can be slow, or the iterates could diverge if
a is too large.

Diminishing Ensure a*) — 0 and Y32, a®) = co. This does not guarantee descent at
each iteration, but it can avoid diverging iterates.

Line search Given the current iterate 2(*) and a descent direction d*), compute

o® = argmin f(z® + ad®)
a>0
exactly if possible. Otherwise, do backtracking line search

initialize a(k) =1
while f( )+ ad®) > f(a®) + ya®) ¥ f(2*)Tqk)
ol o ga(k)

where v € (0,0.5) and 8 € (0,1) are hyperparameters.
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Further topics to explore

There is a wealth of mathematical analyses of descent methods involving:
@ guarantees for convergence to a stationary point

e good convergence criteria (e.g., |z — 2=V < ¢, |f(2®) — f(z*=D)| < ¢,
IV f(@®)] < &)
e convergence rates (e.g., f(z®)) — f(z*) < £[=(@ — 2*|3)

There are other descent methods that can be implemented “derivative-free”, such as
@ coordinate descent

o Nelder-Mead algorithms
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3. Equality-constrained optimization
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Equality-constrained optimization

Given an objective function f : R™ — R and a constraint function h : R™ — R™, we denote an
equality-constrained nonlinear program with the notation

minimize f(z)

subject to h(z) =0

We assume f € C}(R",R) and h € C}(R",R™).

18



Lagrange multipliers for equality-constrained problems

Define the Lagrangian function
L(z,\) == f(z) + ATh(z Z)\h

where A € R™ is a vector of Lagrange multipliers.

Theorem (First-order NOC for equality-constrained problems)

Suppose z* € R™ is a local minimum of f € C'(R™,R) subject to h(xz*) = 0 with
h € CL(R™,R™). Moreover, assume {Vh;(x*)}, are linearly independent. Then there exists
a unique \* € R™ such that

Vi L(z*,\*) = +Z)\*Vh

Second-order NOCs and SOCs for constrained problems are discussed in AA203-Notes and
(Bertsekas, 2016).
19


https://github.com/StanfordASL/AA203-Notes

First-order NOC visualized

Re-arrange V, L(z*,\*) = 0 to get
~Vf(x Z Nf Vh(

Further reduction of the objective value
would produce a change in the constraint
function, thereby violating h(x) = 0.

-0

-10
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Regularity conditions for equality-constrained problems

The first-order NOC required that z* is a regular point, i.e., that {Vh;(z*)}, are linearly
independent vectors. Since Vh;(x*) € R™, this implicitly requires m < n (i.e., you cannot find
more than n linearly independent vectors in R™).

Solving ming . (z)—0 f(z) can be viewed as solving for n variables subject to m constraints.
The proof of the first-order NOC relies on eliminating m variables to arrive at an unconstrained
problem in n — m variables, which in turn relies on {Vh;(z*)}™, being linearly independent to

apply the implicit function theorem.

See (Bertsekas, 2016, §4.1.2) for further details.
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4. Inequality-constrained optimization
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Inequality-constrained optimization

Given an objective function f : R™ — R and constraint functions h : R — R™ and
g : R™ — R", we denote an inequality-constrained nonlinear program with the notation

minimize f(zx)

subject to h(x)
9(z)

0
0

IA

We assume f € C}(R",R), h € C}(R",R™), and g € C*(R",R"). We use “<" to denote
element-wise inequality in this scenario.

For any feasible point z, i.e., such that h(z) = 0 and g(x) < 0, define the set of active
inequality constraints by

Ag(x) ={je{1,2,...,7} | gj(x) = 0}.
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Karush-Kuhn-Tucker (KKT) NOC conditions

With Lagrangian multipliers A € R™ and p € R”, define the Lagrangian

L(x, A\ ) = f(x) + ATh(z) + p"g(x +Z/\h @)+ D 1ig;(@)

Theorem (First-order NOC for inequality-constrained problems)

Suppose z* € R™ is a local minimum of f € C1(R™,R) subject to h(xz*) = 0 and g(z*) < 0
with h € C*(R™,R™) and g € C'(R™,R"). Moreover, assume

{Vhi(a*)}iZy U{Vg;(x7)}jea, @)
are linearly independent. Then there exist unique A* € R™ and p* € R” such that

Ve L(z*, \*, %) = 0, w* =0, w; =0, Vj & Ay(x").

We can also write the last condition succinctly as ,u*Tg(x*) =0.
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KKT conditions for convex problems

Consider when f is convex, each g;(z) is convex, and h(z) is affine, i.e., h(xz) = Az —b. Then

we have S
minimize f(x
reR™ f( )

subject to Ax =b
g(x) 20

for which the feasible set X := {x € R" | Az = b, g(z) < 0} is convex.

Theorem (KKT conditions are NOCs and SOCs for convex problems)

Suppose f € C1(R™,R) and g € C*(R™,R") are convex, and that there exists at least one
strictly feasible point x € X, i.e., Az = b and g(x) < 0. Then (z*, \*, u*) describe a global
minimum if and only if

Az*=b, g(z*) 20, VL(a* X, pu*)=0, p*=0, pg(z*)=0.
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Example: Maximal rectangle inside a circle

maximize x1 + X9

subject to % 4+ 22 = 12

We have f(z) = —x1 — 22 (for minimization) with h(z) = 23 + 23 — r?, so

L(z,\) = —x1 — x9 + MNa? + 22 —72).

The first-order NOC at a local minimum (z*, \*) is

£ o\ =142 27\ N . 1
Ve L(z*, \*) = (—1+2)\*x§ =0 < zj=2a; = e
Substitute into z}% 4 23% = 2 to get \* = iﬁ = 2] =212} = j:\/iir.
Of the two possible solutions, =} =z} = \/iir is the global maximum (i.e., a square).
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Optimality conditions in algorithm design

Why should we care about characterizing optimality conditions?

@ Even just NOCs can form a filter for distilling local minima from feasible points.

@ NOGs and SOCs can serve as a means for “measuring progress” towards optimality during
an optimization procedure, particularly for convex problems.

@ Problem structure (e.g., quadratic objective with linear constraints) coupled with
convexity and the KKT conditions can be leveraged to implement efficient solvers with

good convergence properties (Boyd and Vandenberghe, 2004).

@ Even for non-convex problems, convex solvers can be used in iterative convex
sub-problems that can converge to a local minimum.
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Preview: Sequential Convex Programming (SCP)

Consider the non-convex problem

minimize flx)

subject to h(z) =0, g(x) =0

The basic idea of sequential convex programming (SCP) is to maintain an estimate z(*) and
iteratively solve for 2(**1) via the convex sub-problem

C e B(R)
minimize F¥(x)

subject to W™ (z) = AWz —bp*) =0, g™ (z) <0, 2 € T®

where (f®) 5()) and h*) are convex and affine, respectively, approximations of (f,g) and h,
respectively, over a convex trust region constructed around :c(k), e.g.,

TR {z ]| —.’E(k)Hoo < p},

for some p > 0.
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Next class

Pontryagin's maximum principle and indirect methods for optimal control
(i.e., applying NOCs to optimal control problems)
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