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Course overview and goals

To learn the theory and practice of fundamental techniques in optimal and learning-based
control.
To gain a holistic understanding of how such techniques are used across fields.
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Agenda

1. Optimal control problems

2. Nonlinear optimization theory

3. Pontryagin’s maximum principle and indirect methods

4. Direct methods

5. LQR-based methods

6. Model predictive control

3



Agenda

1. Optimal control problems

2. Nonlinear optimization theory

3. Pontryagin’s maximum principle and indirect methods

4. Direct methods

5. LQR-based methods

6. Model predictive control

4



Optimal control problems (continuous-time)

minimize
x,u

J(x, u) := ℓT (T, x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt cost (terminal + stage)

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ] dynamical feasibility

x(t0) = x0, x(T ) ∈ XT boundary conditions

x(t) ∈ X , ∀t ∈ [0, T ] state constraints

u(t) ∈ U , ∀t ∈ [0, T ] input constraints

An optimal control u∗(t) for a specific initial state x0 is an open-loop input. An optimal
control of the form u∗(t) = π∗(t, x(t)) is a closed-loop input.
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Optimal control problems (discrete-time)

minimize
x,u

J(x, u) := ℓT (T, xT ) +
T −1∑
t=0

ℓ(t, xt, ut) cost (terminal + stage)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1} dynamical feasibility

x0 = x̄0, xT ∈ XT boundary conditions

xt ∈ X , ∀t ∈ {0, 1, . . . , T − 1} state constraints

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1} input constraints

An optimal control u∗
t for a specific initial state x0 is an open-loop input. An optimal control

of the form u∗
t = π∗(t, xt) is a closed-loop input.
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Unconstrained optimization

Given an objective function f : Rn → R, we denote an unconstrained nonlinear program with
the notation

minimize
x∈Rn

f(x).

We usually assume either f ∈ C1 (i.e., “continuously differentiable”) or f ∈ C2 (i.e., “twice
continuously differentiable”).

A solution candidate x∗ ∈ Rn can be a:
local minimum ∃ε > 0 : f(x∗) ≤ f(x), ∀x : ∥x− x∗∥ ≤ ε

global minimum f(x∗) ≤ f(x), ∀x ∈ Rn

If the inequality is strict, i.e., “<”, then x∗ is a strict unconstrained local/global minimum.
Any (strict) global minimum is also a (strict) local minimum.

There can be many minima, or none at all!
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Convex sets and convex functions
A set X ⊆ Rn is convex if

αx + (1− α)y ∈ X , ∀x, y ∈ X , ∀α ∈ [0, 1].

A function f : X → Rn is convex on X if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y),
∀x, y ∈ X , ∀α ∈ [0, 1].

If the inequality is strict, then f is strictly convex.

A function f ∈ C2 is convex on X if and only if ∇2f(x) ⪰ 0 for all x ∈ X . If ∇2f(x) ≻ 0 for
all x ∈ X , then f is strictly convex.

Important examples of convex functions for this course are:
Quadratic f(x) = xTQx (where Q ⪰ 0)

Affine f(x) = Ax + b (both convex and concave)
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Geometry of first-order NOCs
Tangent cone TX (x) “vectors that stay in X ”
Normal cone NX (x) “vectors that leave X ”

If x∗ is a local minimum of f over X , then
−∇f(x∗) ∈ NX (x∗), i.e., there is no feasible com-
ponent of −∇f(x∗) that would allow us to locally
decrease f(x∗).

For convenience, we write “−∇f(x∗) ⊥x∗ X ”. In
other literature, you may see “−∇f(x∗) ⊥ TX (x∗)”.

If X = {x ∈ Rn | h(x) = 0, g(x) ⪯ 0} and the LICQ holds at x∗ ∈ X , then

TX (x∗) =
{

d ∈ Rn | ∂h

∂x
(x∗)d = 0, ∇gj(x∗)Td ≤ 0, ∀j ∈ Ag(x∗)

}
NX (x∗) =

{
v ∈ Rn | v = ∂h

∂x
(x∗)Tλ + ∂g

∂x
(x∗)Tµ, µ ⪰ 0, µj = 0,∀j /∈ Ag(x∗)

}
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Fritz John first-order NOCs

Theorem (Fritz John first-order NOCs)
If x∗ is a local minimum, there exist
(η, λ∗, µ∗) ∈ {0, 1} × Rm × Rr such that

(η, λ∗, µ∗) ̸= 0
−∇x Lη(x∗, λ∗, µ∗) ⊥x∗ S

µ∗
j ≥ 0, µ∗

j gj(x∗) = 0, ∀j ∈ {1, 2, . . . , r}

where Lη(x, λ, µ) is the partial Lagrangian

Lη(x, λ, µ) := ηf(x) + λTh(x) + µTg(x).

The “abnormal case” η = 0 yields necessary conditions independent of the objective f .

Corollary
If S = Rn and the LICQ holds, then η = 1 and ∇x L1(x∗, λ∗, µ∗) = 0.
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Pontryagin maximum principle (discrete-time)

Collect these necessary conditions together to get the Pontryagin maximum principle (PMP).

Theorem (Pontryagin maximum principle (discrete-time))
Let (x∗, u∗) be a local minimum of the discrete-time OCP with terminal set XT and control
set U . Then η ∈ {0, 1} and {p∗

t }T
t=0 ⊂ Rn exist such that

(η, p∗
0, p∗

1, . . . , p∗
T ) ̸= 0 non-triviality

p∗
t = ∇x Hη(t, x∗

t , u∗
t , p∗

t+1), ∀t ∈ {0, 1, . . . , T − 1} adjoint equation

−p∗
T − η∇ℓT (x∗

T ) ⊥x∗
T
XT transversality

∇u Hη(t, x∗
t , u∗

t , p∗
t+1) ⊥u∗

t
U , ∀t ∈ {0, 1, . . . , T − 1} maximum condition (weak)
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Pontryagin maximum principle (continuous-time)

The possibility of large spatial control perturbations still corresponding to “feasible neighbours”
of (x∗, u∗) suggests the following strengthened PMP.

Theorem (Pontryagin maximum principle (continuous-time))
Let (x∗, u∗) be a local minimum (using the C0-norm and L1-norm, respectively) of the
continuous-time OCP with terminal set XT and bounded control set U . Then η ∈ {0, 1} and
p∗ : [0, T ]→ Rn exist such that

(η, p∗(t)) ̸≡ 0 non-triviality

−ṗ∗(t) = ∇x Hη(t, x∗(t), u∗(t), p∗(t)), ∀t ∈ [0, T ] adjoint equation

−p∗(T )− η∇ℓT (x∗(T )) ⊥x∗(T ) XT transversality

Hη(t, x∗(t), u∗(t), p∗(t)) = sup
u∈U

Hη(t, x∗(t), u, p∗(t)), ∀t ∈ [0, T ] maximum condition

A rigorous proof relies on variational calculus (Liberzon, 2012; Clarke, 2013).
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Indirect methods for optimal control

An indirect method generally focuses on solving the BVP(
ẋ∗

ṗ∗

)
=

(
f(t, x∗, u∗)

−∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, h(x∗(T ), p∗(T )) = 0.

where h(x∗(T ), p∗(T )) ∈ Rn. The open-loop optimal control candidate u∗(t, x∗(t), p∗(t)) is
then extracted.

The boundary condition h(x∗(T ), p∗(T )) = 0 is determined by the terminal set constraint
x∗(T ) ∈ XT and the transversality condition −p∗(T )− η∇ℓT (x∗(T )) ⊥x∗(T ) XT .

We are implicitly assuming an optimal control exists. Even then, there may be multiple local
optima.
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Shooting methods

To solve the BVP(
ẋ∗

ṗ∗

)
=

(
f(t, x∗, u∗)

−∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, h(x∗(T ), p∗(T )) = 0,

we consider the associated initial value problem (IVP)(
ẋ∗

ṗ∗

)
=

(
f(t, x∗, u∗)

−∇x Hη(t, x∗, u∗(t, x∗, p∗), p∗)

)
, x∗(0) = x0, p∗(0) = p0.

We can integrate the IVP forward in time to get x∗(T ; p0) and p∗(T ; p0), which are
parameterized by p0.

We can use a root-finding method (e.g., bisection search, Newton-Raphson method) to find p0
such that h(x∗(T ; p0), p∗(T ; p0)) = 0. This is called single shooting and gives us a solution of
the BVP.
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Direct methods

In direct methods, we transcribe the OCP into a finite-dimensional nonlinear optimization
problem that we then solve directly with nonlinear programming.

minimize
x,u

ℓT (x(T )) +
∫ T

0
ℓ(t, x(t), u(t)) dt

subject to ẋ(t) = f(t, x(t), u(t)), ∀t ∈ [0, T ]
x(0) = x0

x(T ) ∈ XT

u(t) ∈ U , ∀t ∈ [0, T ]


=⇒


minimize

z∈S⊆Rd
f(z)

subject to h(z) = 0
g(z) ⪯ 0

Each direct method uses some manner of transcription, which also determines what z, h, g,
and S represent.
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Sequential convex programming (SCP)

Consider the non-convex problem

minimize
z∈Rd

f(z)

subject to h(z) = 0
g(z) ⪯ 0

The basic idea of SCP is to iteratively solve for z(k) via the convex sub-problem

minimize
z∈Rd

f̂ (k)(z)

subject to ĥ(k)(z) := Â(k)z − b̂(k) = 0
ĝ(k)(z) ⪯ 0
z ∈ T (k) := {z ∈ Rd | ∥z − z(k)∥∞ ≤ ρ(k)}

where (f̂ (k), ĝ(k)) and ĥ(k) are convex and affine, respectively, approximations of (f, g) and h,
respectively, over a convex trust region T (k) around z(k) for some ρ(k) > 0.
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SCP for OCPs

Consider the discrete-time OCP

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
x0 = x̄0

xT ∈ XT

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

Assume XT and U are convex sets, and ℓT and ℓ are convex in xT and (xt, ut), respectively.
Then the remaining non-convexity is due to the nonlinear dynamics constraints.
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SCP for OCPs

Let {x(k)
t }T

t=0 and {u(k)
t }T −1

t=0 represent our current solution iterate. Linearize the dynamics
around this iterate to get the estimate

f̂ (k)(t, xt, ut) := f(t, x
(k)
t , u

(k)
t ) + ∂f

∂x
(t, x

(k)
t , u

(k)
t )(xt − x

(k)
t ) + ∂f

∂u
(t, x

(k)
t , u

(k)
t )(ut − u

(k)
t )

which allows us to construct the convex OCP

minimize
x,u

ℓT (xT ) +
T −1∑
t=0

ℓ(t, xt, ut)

subject to xt+1 = f̂ (k)(t, xt, ut), ∀t ∈ {0, 1, . . . , T − 1}
x0 = x̄0

xT ∈ XT

ut ∈ U , ∀t ∈ {0, 1, . . . , T − 1}

∥xt − x
(k)
t ∥∞ ≤ ρ(k)

x , ∀t ∈ {0, 1, . . . , T − 1}

∥ut − u
(k)
t ∥∞ ≤ ρ(k)

u , ∀t ∈ {0, 1, . . . , T − 1}
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Direct methods in practice

“As you begin to play with these algorithms on your own problems, you might feel like you’re
on an emotional roller-coaster.” - Russ Tedrake, Underactuated Robotics

In general, there are no guarantees for solving nonlinear optimization problems. You can
converge to a bad local minimum, or not at all.

You may need to spend some time tuning, e.g., your cost function and trust region radii, or
perhaps adding slack variables.

It is also a good idea to try “warm-starting” your initial guess in SCP with the solution to an
easier problem (e.g., one with looser constraints).

24
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LQR feedback for linear systems with quadratic costs

Consider the discrete-time OCP

minimize
u

1
2xT

T QT xT +
T −1∑
t=0

(
1
2xT

t Qtxt + 1
2uT

t Rtut + xT
t Stut

)
subject to xt+1 = Atxt + Btut, ∀t ∈ {0, 1, . . . , T − 1}

which is parameterized by the initial state x0 and minimized over the control inputs u alone,
for QT ⪰ 0, Qt ⪰ 0, and Rt ≻ 0.

We solved this recursively via dynamic programming, during which we encountered the Bellman
optimality equation

J∗
t (xt) = min

ut

1
2

(
xt

ut

)T [
Qt St

ST
t Rt

] (
xt

ut

)
+ (Atxt + Btut)TPt+1(Atxt + Btut)︸ ︷︷ ︸

=J∗
t+1(xt+1)


︸ ︷︷ ︸

state-action value function Q∗(xt, ut)
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LQR feedback for linear systems with quadratic costs

Consider the discrete-time OCP

minimize
u

J0(x0) := 1
2xT

T QT xT +
T −1∑
t=0

(
1
2xT

t Qtxt + 1
2uT

t Rtut + xT
t Stut

)
subject to xt+1 = Atxt + Btut, ∀t ∈ {0, 1, . . . , T − 1}

which is parameterized by x0 ∈ Rn, QT ⪰ 0, Qt ⪰ 0, and Rt ≻ 0.

The optimal control u∗ = π∗(t, x) = Ktx is closed-loop and linear. It can be computed offline
via the backwards Riccati recursion

PT := QT

Kt = −(Rt + BT
t Pt+1Bt)

−1(BT
t Pt+1At + ST

t )

Pt = Qt + AT
t Pt+1At − (AT

t Pt+1Bt + St)(Rt + BT
t Pt+1Bt)

−1(BT
t Pt+1At + ST

t )
= Qt + AT

t Pt+1(At + BtKt) + StKt
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LQR-based methods for solving unconstrained nonlinear OCPs

Consider the discrete-time OCP

minimize
x̄,ū

J(x̄, ū) := ℓT (x̄T ) +
T −1∑
t=0

ℓ(t, x̄t, ūt)

subject to x̄t+1 = f(t, x̄t, ūt), ∀t ∈ {0, 1, . . . , T − 1}
x̄0 = x0

We can use LQR to approximately solve this problem for an open-loop trajectory (x̄, ū) and a
locally optimal policy u∗

t = π∗
t (t, xt, x̄t, ūt) = ūt + Kt(xt − x̄t) simultaneously!

Specifically, we will consider two iterative methods:
iterative LQR (iLQR) Approximate the cost and dynamics as quadratic and affine, respectively,

then solve the optimal Bellman equation recursively.
differential dynamic programming (DDP) Approximate the value function and Bellman

equation as quadratic, then solve the optimal Bellman equation recursively.
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iLQR and DDP

Input: initial state x0 ∈ Rn, convergence tolerance ε > 0, maximum iterations N ∈ N>0

initialize nominal control sequence ū = {ūt}T −1
t=0 , initial cost change J̃ =∞.

Rollout x̄t+1 = f(t, x̄t, ūt) to get x̄ = {x̄t}T
t=0 and J(x̄, ū).

for i = 1, 2, . . . , N

Backward pass:
Compute the approximating terms {ηt, hx,t, hu,t, Hxx,t, Huu,t, Hxu,t}T −1

t=0 .
Recursively compute {βt, pt, Pt}T

t=0 and {kt, Kt}T −1
t=0 .

Forward pass:
Rollout x̃t+1 = f(t, x̄t + x̃t, ūt + ũt)− x̄t+1 with ũt = kt + Ktx̃t.
Update (x̄, ū)← (x̄ + x̃, ū + ũ) and J̃ ← J(x̄ + x̃, ū + ũ)− J(x̄, ū).

if ∥ũ∥∞ < ε and/or |J̃ | < ε
break

return x̄, ū, and {kt, Kt}T −1
t=0 .

The output is an open-loop trajectory (x̄, ū) that is locally optimal for the OCP, and a policy
π(t, x, x̄, ū) = ū + kt + Kt(x− x̄) that is locally optimal for closed-loop tracking.
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Model predictive control

Consider the discrete-time dynamical system x(t + 1) = f(x(t), u(t)). In model predictive
control (MPC), at each time t we solve the optimal control problem

minimize
u

Vf(xN |t) +
N−1∑
k=0

ℓ(xk|t, uk|t)

subject to x0|t = x(t)
xk+1|t = f(xk|t, uk|t), ∀k ∈ {0, 1, . . . , N − 1}
xk|t ∈ X , ∀k ∈ {0, 1, . . . , N − 1}
xN |t ∈ Xf

uk|t ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

for a sequence {u∗
k|t}

N−1
k=0 . The MPC feedback policy is then u(t) = πMPC(x(t)) := u∗

0|t.

The set of feasible initial states is
X0 := {x ∈ Rn | ∃{uk}N−1

k=0 ⊆ U : {xk}N−1
k=0 ∈ X , xN ∈ Xf},

where x0 = x and xk+1 := f(xk, uk) for all k ∈ {0, 1, . . . , N − 1}.
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Recursive feasibility and stability

Suppose:
The initial MPC problem is feasible, i.e., x(0) ∈ X0.
There exists a feedback policy πf : Rn → Rm that renders Xf invariant subject to state
and input constraints, i.e.,

Xf ⊆ X , πf(x) ∈ U , f(x, πf(x)) ∈ Xf ,

for all x ∈ Xf .
The function f is continuous, and ℓ and Vf are uniformly continuous. Moreover,
f(0, 0) = 0, πf(0) = 0, and ℓ and Vf are positive-definite.
The sets X , U , and Xf are closed and bounded, and each contain the origin.
The terminal cost function Vf : Rn → R satisfies

Vf(f(x, πf(x)))− Vf(x) ≤ −ℓ(x, πf(x))
for all x ∈ Xf .

Then the MPC feedback policy is recursively feasible, and asymptotically stabilizing with region
of attraction X0. Much of this depends on the terminal ingredients (Xf , πf , Vf). 34



Predictive control versus the real-world

Any type of predictive control assumes the system evolves in a predictable fashion, e.g.,

x(t + 1) = f(x(t), u(t)),

with known f : Rn × Rm → Rn.

In reality, we often instead have

x(t + 1) = f(x(t), u(t), w(t)),

with a possibly time-varying disturbance w(t) that enters our system with currently unknown
structure. The disturbance w(t) can be structured itself, random noise, or some combination
thereof.

What can we hope to do in this situation?
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Goals of robust constrained control

Consider the uncertain system

x(t + 1) = f(x(t), u(t), w(t)),

where we assume w(t) ∈ W for all t and some set W.

The goal of robust constrained control is to design a feedback policy u(t) = π(x(t)) such that:
The state and input robustly satisfy constraints, e.g., x(t) ∈ X and u(t) ∈ U for all t and
all possible realizations of w(t).
The system is robustly stable, e.g., x(t) converges to some bounded neighbourhood of the
origin.
Closed-loop trajectories are “optimal” with respect to some notion of performance, e.g., in
expectation or in the worst-case.
The set of robustly feasible initial states X0 is as large as possible.

Achieving these goals requires some knowledge or assumptions about f and W.
36



Tube MPC

Tube MPC computes a nominal pair x̄·|t = {x̄k|t}N
k=0 and

ū·|t = {ūk|t}N−1
k=0 , while planning to apply the policy

uk|t = ūk|t + K(xk|t − x̄k|t)

to account for future information gain.

Overall, we need to:
Compute the set E∞ that the error will remain inside.
Modify the constraints so {x̄k|t} ⊕ E∞ ⊆ X and {ūk|t} ⊕KE∞ ⊆ U .
Formulate the tube MPC problem as a convex optimization.

We can then prove that the constraints are robustly satisfied, the tube MPC problem is
recursively feasible, and the closed-loop system is robustly stable.
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