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Roadmap



Recap: Model-based RL
• In model-free RL, we discussed different approaches to solve unknown MDPs directly from experience via policy / value-

function learning

• In model-based RL, we aim to (1) estimate an approximate model of the dynamics, and (2) use it for control


Approach 1: “learn a model  from experience and use it to plan” 
p(xt+1 |xt, ut)

1. Run base policy  in the environment (e.g., random policy, exploration policy) and collect dataset of transitions 



2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood) 





3. Use the learned model to plan a sequence of actions

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

τ

R(τ)

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we are our about the prediction

This allows us to reason in terms of expectations under our model 

YES NO
Sys. ID Distribution 

mismatch
Exploitation of errors



Recap: Model-based RL
Uncertainty estimation

• Learning from a probabilistic standpoint (i.e., deterministic vs 
probabilistic predictions)


Aleatoric uncertainty Epistemic uncertainty

• The importance of estimating model/epistemic uncertainty


• A structured way to represent uncertainty over a parametric model is 
through a posterior distribution over the parameters p(θ |𝒟)

• Two examples:

• Gaussian Processes (accurate; expensive; limited expressivity)

• Ensembles (approximate; simple; high-capacity NNs)
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Recap: Model-based RL
• How do we use this in planning? A possible idea is the following:


• Given a candidate action sequence :

1. Sample  (in the case of ensembles, this is equivalent to choosing one among the models)

2. Propagate forward the learned dynamics according to , for all 

3. Compute (predicted) rewards 


4. Repeat steps 1-3 and compute the average reward 




u1, …, uT
θi ∼ p(θ |𝒟)

xt+1 ∼ pθi
(xt+1 |xt, ut) t

∑
t

r(xt, ut)

J (u1, …, uT) =
1
N

N

∑
i=1

H

∑
t=1

r (xt,i, ut),  where xt+1,i ∼ pθi (xt+1,i |xt,i, ut)



τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

Generate samples

Fit a model / estimate 
return

Improve the policy  plan through  fθ
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Recap: Model-based RL
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Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling

• Key idea: 


• Model: Use ensemble of NNs to approximate 
posterior over model
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Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling

• Key idea: 


• Model: Use ensemble of NNs to approximate 
posterior over model


• Propagation: sample different models and use them 
to generate predictions of different “futures”
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Case study: PETS
• Probabilistic Ensembles with Trajectory Sampling

• Key idea: 


• Model: Use ensemble of NNs to approximate 
posterior over model


• Propagation: sample different models and use them 
to generate predictions of different “futures”


• Planning: apply MPC (compute action sequence via 
sampling, i.e., cross-entropy method (CEM) )
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Case study: PETS
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Why model-based?

• Pros:

• Sample efficiency

• Improved multi-task performance

• Transitions provide strong supervision (opposed to e.g., sparse reward)


• Cons:

• Optimize the wrong objective

• Can converge to worse performance if model is wrong

• Can be difficult to train with high-dimensional states/observations (e.g., images)
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Outline

Last week Approach 1:

“Learn a model and use it to plan”

Approach 2:

“Learn a model and improve model-
free learning”

General idea

Remarks

“Dyna-style” algorithms

• Integrating planning and learning

• Dyna-Q & Extensions
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A bird’s eye view of previous lectures
• Value-based methods: learn value functions from experience

• Policy optimization: learn policies from experience

• Previous lecture: learn a model from experience (and plan to construct a policy)

• Today: integrate learning and planning into a single architecture

Note:

• Last week we used the term model to describe a dynamics model, i.e.,





• In general, we can assume the model to represent the unknowns in our MDP 




xt+1 ∼ pθ(xt+1 |xt, ut)

ℳ = (X, U, P, R)
xt+1 ∼ pθ(xt+1 |xt, ut)

Rt = rθ(xt, ut)

Examples of models:

• Table look-up

• Linear

• GP

• Neural network,…
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Different sources of experience
• Having a model enables us to consider two sources of experience

Real experience: sampled from the environment (true MDP)

• Interacting with the environment provides us with samples from the true MDP 




ℳ = (X, U, P, R)
xt+1 ∼ P(xt+1 |xt, ut)

Rt = R(xt, ut)

Simulated experience: sampled from the model (approximate MDP)

• Simulating transitions through the model provides us with samples from an approximation of the MDP


xt+1 ∼ pθ(xt+1 |xt, ut)

Rt = rθ(xt, ut)
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A general recipe for model-based acceleration
1. Interact with the environment to generate a dataset of transitions 

2. Fit dynamics/reward model to 

3. Generate simulated experience under your model and use model-free algorithms

𝒟 = {(xt, ut, rt, xt+1)}
𝒟

Arrow = relationship of 
influence and presumed 
improvement
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Example: MBRL via policy gradient
• In PO, we defined the policy gradient via (variations of) the following equation:





where used real experience (in the form of trajectories of interactions with the environment) to practically approximate the 
expectations


• We could consider the following scheme:

∇θJ(θ) ≈
1
N

N

∑
i=1

T

∑
t=1

∇θlog πθ (ui,t ∣ xi,t) Qϕ(xi,t, ui,t)

1. Run base policy  in the environment (e.g., random policy, exploration policy) and collect dataset of transitions 



2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood) 





3. Use the learned model to generate simulated trajectories  through policy 

4. Use  to improve  via policy gradient

π0(ut |xt)
𝒟 = {(xt, ut, xt+1)i}

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

{τi} πθ
{τi} πθ

Question 
What is a potential problem 
with this?
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Issue with (long) model-based rollouts

Run  with real dynamicsπθ
Run  with estimated dynamicsπθ

• We want to avoid long model-based rollouts, as 
these will necessarily incur in accumulating error


• At the same time, short rollouts do not 
guarantee exploration of “later timesteps”
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Dyna-Q

Initialize  and ,
Repeat (for each episode): 

(a) current (non-terminal) state
(b) Choose  from  using policy derived from Q (e.g., -greedy) 
(c) Take action , observe 

(d)  

(e) 
(f) Repeat n times:

sample random state previously observed
sample random action previously taken in 

 ; predict through model

until  is terminal

Q(x, u) Model(x, u), ∀x ∈ X, ∀u ∈ U

xt ←
ut xt ϵ

ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
Model(xt, ut) ← xt+1, rt

xt ←
ut ← xt
xt+1, rt ← Model(xt, ut)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
xt
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Dyna-Q

Initialize  and ,
Repeat (for each episode): 

(a) current (non-terminal) state
(b) Choose  from  using policy derived from Q (e.g., -greedy) 
(c) Take action , observe 

(d)  

(e) 
(f) Repeat n times:

sample random state previously observed
sample random action previously taken in 

 ; predict through model

until  is terminal

Q(x, u) Model(x, u), ∀x ∈ X, ∀u ∈ U

xt ←
ut xt ϵ

ut rt, xt+1

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
Model(xt, ut) ← xt+1, rt

xt ←
ut ← xt
xt+1, rt ← Model(xt, ut)

Q(xt, ut) ← Q(xt, ut) + α (rt + γ max
u′￼t+1

Q (xt+1, u′￼t+1) − Q(xt, ut))
xt

• Model = Tabular model

• Direct RL = Q-learning

• Planning = 1-step
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Example: Dyna-maze

• 47 states, 4 actions

• Deterministic dynamics

• Reward = 0 everywhere, except +1 on G

• 

• Zero-initialized Q, 

γ = 0.95
α = 0.1, ϵ = 0.1
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Example: Dyna-maze
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Example: Dyna-maze

• The plot compares the policies found by Dyna-Q with and without planning, half-way through 
the second episode


• Without planning (n = 0), each episode adds only one additional step to the policy, and so only 
one step (the last) has been learned so far 


• With planning, again only one step is learned during the first episode, but during the second 
episode planning allows to develop an extensive policy that will reach almost back to the start 
state
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“Dyna-style” algorithms
• Dyna-Q represents a specific choice of model, planning, direct RL algorithm, etc.


• More generally, we can define the following recipe for “dyna-style” algorithms 

1. Collect data 

2. Learn dynamics / reward model, i.e., 

3. Repeat n times


1. Sample  from buffer

2. Choose action  (from dataset, , random, exploration, etc.)

3. Simulate dynamics / reward 

4. Train on  via model-free RL

5. Optionally, take  more model-based steps

{(xt, ut, rt, xt+1)}
pθ(xt+1 |xt, ut), rθ(xt, ut)

xt
ut π

̂xt+1 ∼ pθ(xt+1 |xt, ut), ̂rt = rθ(xt, ut)
{(xt, ut, ̂rt, ̂xt+1)}

k

• Only uses short roll-outs

• While observing diverse states
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Example: model-based acceleration of DQN 

Process 1: Collect data

Dataset of transitions

(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)

Process 2: Q-function 
regression

Δθ = α (rt + γ max
u′￼t+1

Qθ (xt+1, u′￼t+1)−Q̂θ(xt, ut))∇θQ̂θ(xt, ut)
TD update

Process 3: Target 
network update

θ → ϕ

Process 4: Model 
training

θ* = arg min
θ ∑

i

fθ (xt, ut) − xt+1
2

Process 5: Model-data 
collection

Dataset of transitions

(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)
(xt, ut, xt+1, rt)

• Pros:

• Generally more sample efficient via 

augmented experience

• Cons:


• Model errors can affect learning (we could 
consider ideas from uncertainty 
estimation)


• In practice, these models tend to learn 
faster, but converge to overall worse 
performance 
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Case study: PILCO

• Deisenroth and Rasmussen, Probabilistic 
inference for learning control, ICML 2011

• Approach: use Gaussian process for dynamics 
model


• Gives measure of epistemic uncertainty

• Extremely sample efficient


• Pair with arbitrary (possibly nonlinear) policy


• By propagating the uncertainty in the 
transitions, capture the effect of small amount 
of data

https://www.youtube.com/watch?v=XiigTGKZfks


Samples from prior distribution Samples from posterior distribution

Bayesian inference
• Represent “distribution over functions”

Gaussian process reminder

• Typically, initialize with zero mean; behavior determined entirely by kernel

• Standard kernel choice: squared exponential, used in PILCO


• Has smooth interpolating behavior
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Case study: PILCO

• For GP conditioned on data, one step 
prediction is Gaussian

• But, need to make multistep predictions: so, 
need to derive multi-step predictive distribution


• Turn to approximating distribution at each time 
with a Gaussian via moment matching
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Case study: PILCO

• All algorithm design choices made to ensure analytical tractability:

• Because of the squared exponential kernel, mean and variance can be computed in closed form

• Choose cost:





• which is similarly squared exponential; thus expected cost can be computed exactly, factoring in uncertainty


• Choose also radial basis function or linear policy, to enable analytical uncertainty propagation

c(x) = 1 − exp (− x − xtarget 
2/σ2

c )
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PILCO (at a high level)

• Uncertainty prop: leverage specific functional forms to derive analytical expressions for mean 
and variance of trajectory under policy.

• Can use chain rule (aka backprop through time) to compute the gradient of expected total cost w.r.t. policy parameters


• Algorithm:

• Roll out policy to get new measurements; update model

• Compute (locally) optimal policy via gradient descent


• This policy is “local” in the sense of the data we’ve given it, i.e., it’s tailored to the regions of state space it’s seen 
before; this is more general than “local” in the sense of linearization


• Repeat
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Combining model and policy learning

• We discussed two possible solutions, but there are infinitely many more!

• Very busy research direction! Many topics not covered here

• Many possible combinations of planning/control, policies, values, and models


• Quite practical: model learning is data efficient and parameterized policy is cheap to evaluate at run time



RL Algorithms

Model-free Model-based

Policy optimization Value-based Learn the model

use dynamics T(xt+1 |xt, ut)do not use dynamics T(xt+1 |xt, ut)

Given the model

 is knownT(xt+1 |xt, ut)directly maximize the RL 
objective


𝔼τ∼pπ(τ) [
H

∑
t=0

γtr (xt, ut)]

estimate

fθ ≈ T(xt+1 |xt, ut)

policy implicitly defined via

 or 
V(x) Q(x, u)

 set π (st) = arg max
a

Q (st, at)

τ = (x0, u0, …, xN, uN)

π(ut |xt)

fθ (xt) ≈ Vπ (xt)
fθ (xt, ut) ≈ Qπ (xt, ut)
fθ (xt, ut) ≈ P (xt+1 ∣ xt, ut)

(e.g., Q-learning, DQN)

(e.g., PG, A2C, A3C)

Generate samples

Fit a model / 
estimate return

Improve the policy
 set π (xt) = arg max

a
Q (xt, ut)

θ ← θ + α∇θ𝔼 [∑
t

r (xt, ut)]
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Next time

• Course recap

• Research presentations


