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Recap: Model-free RL

K We discussed different ways to estimate value functions

Xt

S I & Do de N S N

Q (xt, ut) «— [E [R + }/Q (xtH,utH)]

Tabular representation:

_V(xl)_ _Q(xl, ”1) Q(Xl,lxtz) Q(xl,um)_
V(x) = ‘A/(fcz) O (x, u) = Q(xy, 1)) Q(xz,:uz) .. 006, u,)
K _V(xn)_ _Q(xn, u) O, u,) ... O, um)_

Unbiased Low variance; can learn online
High variance; Biased
, . Exact must reach :
Dynamic Programming e Monte Caro 1 minal state Temporal-Difference
n A knowledge A A A A A
Vv (xt) = [Rt+yV (xm)] of MDP V(xt) «— V(xt) +a<Gt—V(xt)> V(xt) V(xt) + a <R +7/V( t+1) V(xt)>

Q(xt, U, < Q(xt, u) + o (Gt— Q(xt, ut)> Q(xt, U,) — Q(xt, u)+ o <Rt +y0 (xt L U H)—Q(xt, ut)>

* And how to scale these ideas through function approximation

~

Xy
O

Xy

¥t

X
() t+1 () () O v, O X1

O O O O O O M O O O O
Terminal state

Function approximation:

V(x) O, u) Otu) O u) O(x,u,)

npnpnks

MC update
AQ = a G V@(xt)> v,V x)

TD update
AO = (x o V() — Vg(xt)> nggw
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Recap: Model-free RL

Value-based methods

K Generalized Policy lteration

starting
V it

Sarsa & Q-learning

SARSA: on-policy

O(x, u) < Qx,u) +a (’”t +y0 (xt+l’ ut+l)

Q-learning: off-policy

On-policy: evaluate or improve the policy that is used to make decisions
Off-policy: evaluate or improve a policy different from that used to
generate the data

O, u) < Ox,u) +a <

r +ymaxQ(xt+1, t+1)

Uy

Full Backup (DP)

Sample Backup ( TDN

Bellman Expectation

AN |3

Q-Policy Iteration

Sarsa

Equation for g (s,

_ Q(Xt, u;)) quation for g(s, a)
_ Bellman Optimality

Q(xﬁ ut)> Equation for g« (s, a)

Deep RL:

(1) Use deep neural nets to represent QQ

(2) Uses experience replay and fixed Q-targetsj

AN

Q-Value lteration

A\

Q-Learning

N

V,J(0) ~ % »

i=1

Policy gradient:

(2

T

ZVglOgﬂ'@ ltlxlt

>

waximum Likelihood:  VeJue®) ~ —

0* = argmax E__,, 2 Y'R xt, ut
& 120 |
J(6)

N

i=1

(2

(1) estimate its gradient V ,J(6)
(2) do approximate gradient ascent on J(0): 0 < 0+ a 'V ,J(0)

Z Volog m, (”i,t | xi,t)

=1

)(Zeeen)

"Change parameters 0 s.t. trajectories with

)

Problem:

nigh variance of PG

Solution:

paselines, “critics”

higher reward have higher probability”

V,J(0) ~

N T

=1 =1

K In policy optimization, we care about learning an (explicit) parametric policy 7y, with parameters 6 to directly maximize:

J p (xz+1 |-xt7 l/tt)

1
A Z Z Vglog (ui,t | Xi,t) Qqs(xty
N

<
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Recap: [he skeleton of an RL algorithm

m(u, | x,)

AGENT
?

a T = (Xg, Uy, - - -, Xp Upy)

5/31/2023
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o

Generate samples

S

\-

Fit a model / estimate
return

~

J

v
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Improve the policy

17

setrw (x,) = arg max Q (xt, ut)

Z r (xt, ut)

| !

0 — 0+ aVyE

(e.qg., Q-learning,
DQN)

(e.qg., PG, A2C,
A3C)



Recap: Why so many RL algorithms®?

» Different tradeoffs:
o Sample efficiency
o Stability & easy of use

* Different assumptions:
» Stochastic or deterministic
« (Continuous or discrete
* Episodic or infinite horizon

* Different things are easy or hard in different settings:

» Easier to represent the policy?
» Easier to represent the model?

5/31/2023 AA203 | Lecture 17



Recap: Comparison: sample efficiency

« Sample efficiency = how many samples do we need to get a good policy”?
* Crucial question: is the algorithm off policy?

» Off policy: able to improve the policy without generating new samples from the current policy
* On policy: each time the policy is changed, even a little bit, we need to generate new samples

off-policy <ty O N-policy

More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why even bother using less efficient algorithms”? Wall-clock time is not the same as efficiency!
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Recap: stability and ease of use

* Does it converge?
« And if it does, to what?
* Does it always converge”

« Supervised learning: almost always gradient descent
* Reinforcement learning: often not gradient descent
» Q-learning: fixed point iteration
* Model-based RL: model estimator is not optimized for expected reward
» Policy gradient actually is gradient descent (but can be sample inefficient)



Outline (from last week)

Deep RL Algorithms & Applications



Practical implementation (and alternative formulation)

» We discussed how, in PO, we want to compute the following gradient  V,J(0) = E,_, [Vglog pH(T)A(T)]

* o implement this using modern auto-diff tools (e.g., Torch, Jax, Tensorflow), this means writing the following
loss function:

L") = E,._, . [log ps(DA®)]

« But we don’t want to optimize it too far, since we are not working with the true advantage, rather with a noisy
estimate

e |et’s define an alternative loss

LIS(H) — S r~py(7) [ ﬂﬁ(ut‘xt) A(T)]

+ If we take the derivative of L’ and evaluate at @ = 6, , ,, we get the same gradient

Vo (0)]
0 f(60)
Ve ()| = dd _y ( >
’ ‘%m f(6oid ) \f (6oid ) ;
old

5/31/2023 AA203 | Lecture 17

10



Trust Region Policy Optimization (TRPO)

. A [ T (ut ‘ xt) A ]
maximize [, A,
0 0,14 (uf | M )

subject to E, [KL[@M( AEARAE \xt)] <6

* Main idea: use trust region to constrain change in distribution space (opposed to e.g., parameter space)

« Hard to use with architectures with multiple outputs, e.g., policy and value function
« Empirically performs poorly on tasks requiring CNNs and RNNs
» (Conjugate gradient makes implementation more complicatec

5/31/2023 AA203 | Lecture 17

11



Proximal Policy Optimization (PPO)

* Can we solve the problem defined in TRPO without second-order optimization?

PPO v1 - Surrogate loss with Lagrange multipliers

maximize :t [ i (ut ‘ xt) At] + /) (it [KL[ﬂ'@OZd( | xt)?”ﬁ( | xt)] - 5)

¢ 70,14 (uf ‘ At )

* Run SGD on the above objective
» Do dual descent update for

. 7y (| x,)
PPO v2 - Clipped surrogate loss r(0) = , r@,)=1

70,14 (uf | At )

maximize E, [min(r(@)A(2), clip(r(0),1 — €,1 + €)A(7))]

* Heuristically replicates constraint in the objective
* One of the (if not the) most popular PO algorithm
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A taxonomy of RL

RL Algorithms j

do not use dynamics 7(x,, | x,, u,) NVodel-free j

|

~
[ Policy optimization [ Value-based j
J
directly maximize the RL policy implicitly defined via
objective ) V(x) or O(x, u)
H
set 7 (Xt) = arg max QJ (Xt, ut)

Erp,2) Z y'r (xt, ”t) g

| =0 _
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A taxonomy of RL

5/31/2023

[ RL Algorithms
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[ Model-based j use dynamics T(x,,q | x;, u,)

|

[ | earn the model j

estimate
Jo~ T(xyq | x, u,)

14



Outline

Basics of model-based RL

* A basic recipe (and its limitations)

* Learning with high-capacity models: distributional shift

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

Examples & Applications (e.q., PETS)

5/31/2023
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/ Approach 1:

Basics of model-based RL “Learn a model and use it to plan”

* A basic recipe (and its limitations)

* Learning with high-capacity models: distributional shift

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

Examples & Applications (e.q., PETS)

\—_——————————————————————————————————————————————————————————————————’
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/ Approach 1:

Basics of model-based RL “Learn a model and use it to plan”

* A basic recipe (and its limitations)

* Learning with high-capacity models: distributional shift

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

Examples & Applications (e.q., PETS)

B e e e S e
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Approach 2:
Next week “Learn a model and improve model-

A free learning”

_— e e e e e e e . e e s s e s s e e S Saam Sam Saaa Saas Eaam Saa Saaa Eaam Saam Saaa Saam Eaae Saaa Saae Eaas Saam Smaa Saam Eam Saa Saaa Eaam Saa Saas Saam Saam Saam Saam Eaae San Saas Eaam Saam S Smaa Eaam Saan Saas  Eaam e S Saam Eaam S Eaas B Eam Ea E—m
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General recipe

» If we knew the dynamics T(x, { | x,, u,), we could use tools from optimal control
» Main idea: learn a model fy(x,, u,) ~ T(x,, | x,, u,) from data (or p(x,, | | X, 4,) in the stochastic case)

At a high-level, we could apply the following strategy:

1. Run base policy ﬂo(l/tt | xt) in the environment (e.g., random policy, exploration policy) and collect dataset of transitions

@ — {(xp l/tt, xt+1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

2
0* = arg min 2 fo (xt, ut) — X4 1 |
0

l

3. Use the learned model to plan a sequence of actions

5/31/2023 AA203 | Lecture 17 18



Will this work®?

YES

* |In cases with e.qg., linear-time invariant dynamics, this tends to work pretty well

* Particularly effective If we can hand-engineer a dynamics representation using our knowledge of physics, and fit just a

few parameters
 |f the dataset is generated with sufficient excitation, it gives global knowledge (i.e., some care should be taken to

design a good base policy)

* Thisis essentially how system identification works

NO

 |f we're dealing with non-linear dynamics (and high-capacity models! e.g., neural networks) extrapolation is difficult
and can be misleading

5/31/2023 AA203 | Lecture 17
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Vlotivating example

* The goal is to go as further north as possible

« The base policy defines state distribution (under ;)
* When planning under the model we observe a different state
distribution, i.e., pﬂf(x)

The more (i) the dynamics are complex, (i) we use high-capacity
models, the easier it Is incur In distribution mismatch

5/31/2023 AA203 | Lecture 17



A simple improvement

* \We can leverage ideas from adaptive and receding-horizon control:

1. Run base policy ﬂo(l/tt | xt) in the environment (e.q., random policy, exploration policy) and collect dataset of transitions

@ — {(xta l/tt, xz‘+1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)

2
0 = arg min E fo (xt, ut) — Xy 1 |
0

l

3. Use the learned model to plan a sequence of actions
4. Execute only the first action and measure the new state x,_ ; (i.e., MPC)

5. Add the observed transition (x;, u,, X, 1) to the dataset < and update model (i.e., gradually closing the gap between
P1,(x) and p, (x))

5/31/2023 AA203 | Lecture 17
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Outline

Uncertainty quantification in model-based RL

e (Gaussian Processes

* Bootstrap Ensembles

5/31/2023
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1he main challenge in MBRL

* |deally, we'd want our model to:
* Have high-capacity to represent complex dynamics in the high-data regime
* Not overtit to observed data in the low-data regime

* For example, consider the case where we fit our model to observed data and use
it to plan, according to the previous scheme

ﬁ Run lbase policy ﬂo(ut | xt) in the environment (e.g., random policy, exploration policy) and collect dataset of transitions \
9 — {(Xt, l/tt, xt+1)i}

2. Fit dynamics model to data to minimize error (or equivalently, maximize (log) likelihood)
2
0* = arg meln Z Hfg (xt, ut) — Xp 1 ‘
i

Use the learned model to plan a sequence of actions
Execute only the first action and measure the new state x,_; (i.e., MPC)

Add the observed transition (x;, u,, x,, ;) to the dataset 2 and update model (i.e., gradually closing the gap

between p, (x) and p,, (x)) /

N

Problem: we’ll likely erroneously exploit our model where it is less knowledgeable
(Possible) Solution: consider how “certain” we our about the prediction

5/31/2023 AA203 | Lecture 17
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1 he role of uncertainty estimation

o Specifically, by uncertainty on our predictions, we mean an expression of a distribution over possible outcomes

* This allows us to reason in terms of expectations under our model

15 — truth
— prediction

Ex

5/31/2023 AA203 | Lecture 17

nected reward under high-variance prediction is low



|_earning from a prooabllistic standpoint

* |et’'s consider regression as an example:




|_earning from a prooabllistic standpoint

* |et’'s consider regression as an example:

X




|_earning from a prooabllistic standpoint

* |et’'s consider regression as an example:
Y
)
(V= fg(.f) = 012”4+ Oox + 03
Learning through minimization of squared error
n
k : 1 )
f" = arg min— E (y; — folx;))”

/f/
0 i=1

5/31/2023 AA203 | Lecture 17
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|_earning from a prooabllistic standpoint

* |et’'s consider regression as an example:

Y
y = fo(z) = 012" + oz + 63
\, 1 '/ likelihood \ ;
\Kk p(ylz) = N(y| fo(x),07)




|_earning from a prooabllistic standpoint

* |et’'s consider regression as an example:

y N

bt

Y = f@(z) = (911‘2 + 92:6 = 93

likelihood \

p(ylz) = N(y| fo(x),07)

Learning through likelihood maximization

N(;{/|f9(;1f).(72)

5/31/2023

o = argmax [T N (3 | folai). o)
1=1

N(y| fo(x),o?)

AA203 | Lecture 17 29



How can we model uncertainty”?

* ldea 1: use output entropy (spoiler: this does not work)
¢ Suppose we estimated a model, why not use its entropy”?

p (xt+1 | xta l/tt)

X U

Discrete state-space

H

1 |

p(Stl_H) p(Stz_H) p(St?—,H)

* Doing so will not take epistemic uncertainty into account

5/31/2023

m— Model

Aleatoric uncertainty:
“The process is
intrinsically noisy”

Epistemic uncertainty:
“Uncertainty about the
moael”

AA203 | Lecture 17
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Continuous state-space

St41
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How can we model uncertainty”

Prior: p(@), Likelihood: p(<J | 8), Posterior p(8 | &)

p(Z | O)p(6)
p(D)

* |dea 2: estimate model uncertainty

J{CARRPARTY Bayes’ Theorem p(0 | &) =

Posterior density (N = 1)

H 0 - Prediction
0.5 _ 0.5 7 0.5 1 Uncertainty
= 00 o 07 “ . ’:",-"\’"" . P ———= S
-0.5 1 e -05 1 BEEEZ=="7
-0.5 -1.0 - 7 === Truth -1.0 1 ”
Post. samples
X U _1'0—1.0 -05 00 05 10 e ~1.0 05 0.0 05 10 e _1.0 05 0.0 05 10
wl X X
Lo Posterior density (N = 3 Lo o
« Typically, given a dataset &, we estimate: | —— —
05 0.5 1 Post. samples 0.5 - Uncertainty
arg max log p(<2 | 0) | | ] e e
g p gp < 00 > 0.0 ~ { ‘‘‘‘‘‘‘ > B o
T -051 gl ===~
I -0.5 =~ -
* o express model uncertainty means | 10 10
eStimating: —1'0-1.0 -05 00 05 10 e -1.0 05 0.0 05 10 e 1.0 05 0.0 05 10
w0 X X
p(@ ‘ 9) 10Posterior density (N = 20) ' Lo
=== Truth = Prediction
05 “ 0.5 1 0.5 1 Uncertainty °
and predict according to the predictive posterior o 00 P
"g‘ 0.0 o o - o - . L
—=U. =U.o 7 e ®
. . . -05 o
distribution J p (xt w1 | X, Uy 6’) p(@ | &)do 101 3 101 5
_1'0—1.0 -05 00 05 10 e 1.0 05 0.0 05 10 e 1.0 0.5 0.0 05 10
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(1) Gaussian Processes

* Represent “distribution over functions”

Samples from prior distribution

Bayesian inference

A

Samples from posterior distribution

GP Prior Sample
Observations

GP Posterior Sample
Observations

« Strengths
« Data efficient
* EXxact posterior
* Predictable behavior via the choice of kernel

5/31/2023

* \Weaknesses
* High computational complexity
» (Cannot learn expressive features
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(2) Bootstrap ensembles

* High level idea: “train multiple models and see if they agree”

» Different models will likely agree in regions where we have data and disagree where we do not

P xpu) plx,u) pOolx,u) plogq|x,u,)

A L) -
X U X U X U X U

« Formally, we approximate the posterior with a mixture of Dirac
distributions: 1
0|l D)~— ) 6(0:
p(0 | 2) Nzi‘ (6)

1
Jp (xt+1 | x,, u,, 9) pO| 9)do ~ ~ Zp (xtH | x,, u,, Hi)

>

Vot

O Deep Ensembles o V]

O Multi-SWAG

« Usually, no need for resampling or independent datasets: SGD and random initialization make the models

sufficiently independent
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Planning with uncertainty

* How can we use this additional knowledge in planning”

 (iven a candidate action sequence Uy, ..., Uy

1.
2.

3.

« Caveat: this is only a choice, one could think of other ways to approximate the posterior predictive distribution.

Sample 0; ~ p(6| D) (in the case of ensembles, this is equivalent to ¢

N00SIiNg one among the models)

Propagate forward the learned dynamics according to x,

Compute (predicted) rewards Z r(x, u,)

[
Repeat steps 1-3 and compute the average reward

~ Po(Xiq

X, u,), for all t

1 N H
=1 =1

l

* The general idea is that, when planning, we want to evaluate the expected reward under our model

5/31/2023
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Case study: PETS

* Probabilistic Ensembles with Trajectory Sampling
« Key idea:
 Model: Use ensemble of NNs to approximate

posterior over model
Propagation: sample different models and use them

to generate predictions of different “futures”
Planning: apply MPC (compute action sequence via
sampling, i.e., cross-entropy method (CEM) )

5/31/2023

Deep Reinforcement Learning in a Handful of Trials
using Probabilistic Dynamics Models

Kurtland Chua Roberto Calandra Rowan McAllister Sergey Levine
Berkeley Artificial Intelligence Research
University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

Dynamics Model Trajectory Propagation

o

= Ground Truth

- Bootstrap 1

- Bootstrap 2
= Training Data

4
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ase study: PETS

7-DOF Pusher

T

(a) Cartpole

(b) 7-dof Pusher

k]

==

5000 10000 15000
Number of Timesteps
Half-cheetah (c) 7-dof Reacher (d) Half-cheetah

200 Cartpole 0
o
= S Y AV / atl  —
2 100
O
(a7
05 — - 0—*15000 - — —— 3000 300
Number of Timesteps
7-DOF Reacher
0 18000
— e e
o 512000
= <
~ & 6000
- > e a3
2005 5000 10000 15000 %

Number of Timesteps

100000 200000 300000 400000
Number of Timesteps

S @ me = = ==

I . * H RN * I N

Our Method [Nagabandi et al. 2017 Kamthe et al. 2018 PPO SAC DDPG
[Nag I 6pE GpPDS | I ppo SAC DDPG
(PE-TS1) (D-E) (GP-MM) at convergence at convergence at convergence
— 10 —— 30 —— 50 70 90 01
Lgo| — 20 —— 40 — 60 80 100 S W
S S -10-
: £
T 50" 5
§ 40+ 3
S &
f —30‘
& 30 g
e (0]
© >
- ) +—
@ 201 §_40- 5 A y N/
g ; \ \ N ‘ ”\\v /\\\:‘\J%Vﬁ\ F\s,\ﬂ,ﬁ\\/’”%//\v/\\?w\:’ﬁw 7 A\ ) */.1‘:\\;” —V, p \/
101 A ~ WA A NAWAY ® —501 — 10 =—— 30 —— 50
[l A | ! - \ S ’ =
\ Ja 2 \5\\\§AM;-//§ NZAN\= ~4;A;§:’¥p§g 20 =—— 40 —— 60
5 20 40 60 80 100 0 20 40 60 80 100

Trajectory Number

(a) Mean squared error.

Trajectory Number

(b) Negative log likelihood.
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Next time

* Model-based RL: Policy learning

5/31/2023
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