AA203 Optimal and Learning-based Control

Lecture 15
Model-free BL: Value-based methods

Autonomous systems Lapboratory
Daniele Gammell

) S
v

Autonomous Systems Laboratory
Stanford Aeronautics & Astronautics

A

= N
"" QO J UN[O* ““
IS/ ZNS, AZN] o
12 A~ 22\
15 A%, 3)E)
C\ A)
== - /o
0 e ()
N X

Roadmap _

Model-free RL

Model-based RL

I

Control Adaptive
| optimal control
' | }
Feedback control Adaptive control
Optimal and
learning control
|
Open-loop [----------===-=====m---- N] = o T ———

|

Indirect
methods

Direct
methods

5/22/2023

AA203 | Lecture 15

Closed-loop

DP

|

HJB / HJI

Review

In previous lectures, we made the distinction between prediction (given a policy &, estimate V_,) and control (learn the

optimal policy %)

Problem Bellman Equation Algorithm

Motivated by Dynamic Programming, we discussed exact methods Prediction | Bellman Expectation Equation Policl;/celgi]/jlvueation
for SOI|VIﬂ9 MDPS Control Bellman Expectation Equation
* PO|ICy lteration + Greedy Policy Improvement

* Value lteration Control Bellman Optimality Equation Value lteration

Policy Iteration

Limitation: Update equations (i.e., Bellman equations) require access to dynamics model 1° (xt +1 | X;, ut)

We saw how to use sampling and bootstrapping to approximate the expectations in the update equations:

* Monte Carlo (MC) Learning AGENT ENVIRONMENT
» Temporal-Difference (TD) Learning ® take action 1,

\ |
| -\

observe state xt xt +1

5/22/2023 AA203 | Lecture 15 observe reward 7 Fiv1

* For prediction:

Dynamic Programming backup Monte Carlo backup
V(x) < E|R+7V (x,)] V(%) < V(%) +a (G- (x))
Xt X,
O
U,
e e TS e

ADLEDLDLD LA AED LS N

Terminal state

« Sampling: define the update through samples to approximate expectations Temporal-Difference backup
* MC samples V(x) < V(x) +a (R + 7V (x.)-7(x))
D samples X;
* DP does not sample O
U,

* Bootstrapping: define the update through an estimate
 MC does not bootstrap
* 1D bootstraps
* DP bootstraps

5/22/2023 AA203 | Lecture 15 4

O oo) Xl N N

 For control: GPI

evaluation

m

T V

7~ greedy (V)

Improvement

5/22/2023

starting
V

Problem 1:

Greedy policy improvement over V(x) requires a model of
the MDP!

7 (x) = argmax | R(x,u) +y 2 T(xtH | x,, ut) Vi (Xr+1)

U
X1 €L

On the other hand, greedy policy improvement over Q(x, 1)
does not
7., 1(x) = arg max Q(x, u)

u

Problem 2:

Exploration! To estimate state-action values through
samples, every state-action pair needs to be visited

 With probability 1 — €, choose the greedy action
« With probability €, choose a random action
« Ensures that all m actions are tried with non-zero probability

% + 1 —€ ifu™ = argmax Q(x, u)

a(u | x) =) uEU

— otherwise
m

AA203 | Lecture 15 5

A taxonomy of RL

RL Algorithms
do not use dynamics T(x,; | x,, u,) Model-free j [Model-baseo use dynamics T(x,; | x,, u,)
\ | |
[Policy optimization [Value-based j [Learn the model j [Given the model]
J
directly maximize the RL policy implicitly defined via estimate T(Xt 1 | X, U t) is known
objective _ V(x) or Q(x, u) Jo = T(xy | X, 1)
H
set 7 (Xt) = arg max QJ (Xt, ut)
Erp,2) Z y'r (xt, ”t) “
| =0 _

5/22/2023 AA203 | Lecture 15

Outline

Tabular methods
* On-policy & Off-policy
« SARSA
» Q-learning
Value function approximation

Deep (Value-based) RL Methods & Applications

5/22/2023 AA203 | Lecture 15

Temporal-Difference Control

* 1D learning has several advantages over MC
* [ower variance
* Online
* Incomplete sequences

 Natural idea: use TD instead of MC in our GPI scheme
« Apply TD to estimate Q(x, u)

« Use e-greedy policy improvement
* Update every time-step

5/3/2023 AA203 | Lecture 15

Updating action-value functions with Sarsa

» Uses every element of the quintuple of events, (x,, u,, 1}, X, 1, 4, 1), that make up a transition from one state—action pair to
the next through the following update rule

: Temporal-Difference backup
O(x, u) < Ox,u) + (” +y0 (xt+1’ ut+1> — Q(x, ut)> % (xt) <V (xt) Ta (Rt + 7V (%H)‘V (xt)>
_ Y,

» In RL literature, (X, u,, 1}, X, 1, U, 1) iS Often expressed as
(S, Qp 1y S, 15, Ary 1) - hence the name

Starting Q L
ko IU3

Every time-step:
Policy evaluation Sarsa, Q = g,

5/3/2023 Ar003 | Locture 15 Policy improvement e-greedy policy improvement

Sarsa algorithm

5/3/2023

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize x,
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action u,, observe r,, x,
Choose u,, | from x,, ;using policy derived from Q (e.g., e-greedy)

O, 1) < Qlx, 1) + (r ,+ 70 (xt+19 ut+1> — Ox, ut)>

Xp < Koy Uy <= Upy g
until x, is terminal

AA203 | Lecture 15

10

Sarsa algorithm for 7-policy control

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize x,
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action u,, observe r, x,
Choose u,. | from u,, ;using policy derived from Q (e.g., e-greedy)

Q0 uy) < Q(x, 1) + <rt +70 (xt+1v ut+1> — Q(x, ut)>

X = Xppr Uy == Upy
until x, is terminal

On-policy: evaluate or improve the policy that is used to make decisions

Off-policy: evaluate or improve a policy different from that used to generate the data

5/3/2023 AA203 | Lecture 15

11

Windy Gridworld example

S G v

standard
moves

0 o9 | i 1 2 2 1 0

5/3/2023 AA203 | Lecture 15

* Reward -1 until goal is reached

« ¢ =0.1
e a=0.5
o }/:1

12

Windy Gridworld example

170 -

150 - /.
i o © Acti
L ctions
O
D 0 00 |
o
LL]

50 -

O_

| | | | | | | I
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

5/3/2023 AA203 | Lecture 15

Question:
Would MC methods easily apply to this
problem? And why?

13

Windy Gridworld example

170 -

150 -
i o © Acti
L ctions
O
D 0 00 |
o
LL]

50 -

O_

| | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

5/3/2023 AA203 | Lecture 15

Question:
Would MC methods easily apply to this
problem? And why"?

No, because termination is Not
guaranteed for all policies. If a policy
was ever found that caused the agent
to stay in the same state, then the next
episode would never end.

14

Off-policy learning

» Evaluate target policy z(u | x) to compute V_(x) or Q_(x, u) while following behavior policy u(u | x), i.e.,

X1, Uy, Ty, - X7} ~ W, “the data we observe is obtained under policy p”

Why is this important”?
* |earn from observing humans or other agents

« Re-use experience generated from old policies 7y, 75, ..., 7T,_1 starting

V
* Learn about optimal policy while following exploratory policy .

* |earn about multiple policies while following one policy

5/3/2023 AA203 | Lecture 15

15

Off-policy learning of action-values

« We consider off-policy learning of action-values Q(x, u)

» As in Sarsa, we use the behavior policy y to obtain (x,, u, 1}, X, 1, 1,), but we consider an alternative successor action

Uy ~ (U | X))

« And update Q(x, u) towards value of alternative action

Q0 uy) < Q(x, 1) + (’" + 70 (xt+1’ M;+1>_Q(xtv ut)>

5/3/2023 AA203 | Lecture 15

16

Q-learning

Specifically, in Q-learning
» The target policy & is chosen as the greedy policy w.r.t. O(x, 1)

m(x,,) = argmax Q (xm, ut’+1)

/
Uy

» The behavior policy u is chosen as the e-greedy policy w.r.t. O(x, u)

Which leads to the following Q-learning target and update:

Iy T 70 (xt+1’ “t/+1)

/
Ui

=1, +70 (xm, argmax (J (xm, ’/‘t’+1)> Ox;, u,) < Qx,u,) +a (’”t + y max Q (Xm, M{H)—Q(xt, ut))

/
Ui

— /
= Ity Ty max Q ('xt+l’ ut+1>
U1

5/3/2023 AA203 | Lecture 15 17

Q-learning algorithm for off-policy control

5/3/2023

Initialize Q(x, u), Vx € X, Vu € U, arbitrarily, and Q(terminal-state, -) = 0
Repeat (for each episode):
Initialize x,
Repeat (for each step of episode):
Choose u, from x, using policy derived from Q (e.g., e-greedy)
Take action u,, observe r,, x,

Ox,u) < Qx,u,) + a (rt + y max O (xt s U +1) — Q(x,, ut)>
Uit
until x, is terminal

Q-learning control converges to the optimal action-value function,
Q(Sa a) o q*(57 3)

AA203 | Lecture 15

18

Differences between Sarsa and Q-learning

R=-1
Safer path
* Reward -1 until goal is reached, -100 if on “The CIiff”
- ¢ =0.1
Optimal path « a=0.5
S The Cliff G e v =1
Sarsa
25 -
« Sarsa converges to the optimal e-greedy policy
& Q-learning converges to the optimal policy 7* / value
rewards Q-learning function Q>X<
during
episode
-100 . | | | .
0 100 200 300 400 500

5/22/2023

Episodes AA203 | Lecture 15 19

Relationship between DP and 1D

5/22/2023

Full Backup (DP)

Sample Backup (TD)

O
& !
Bellman Expectation O
Equation for V_(x) lterative Policy Evaluation TD Learning
®
AR I
Bellman Expectation N
Equation for Q,(x, u) Q-Policy Iteration Sarsa
Bellman Optimality m ®

Equation for O*(x, u)

Q-Value lteration

AA203 | Lecture 15

Q-Learning

20

Outline

Value function approximation

5/22/2023

AA203 | Lecture 15

21

Solving large-scale problems with RL

* Reinforcement learning can be used to solve large problems, e.g.,

3 14 15 16 17 18 19 20 21 22 23 24
vy

) < i
T » £ .
- . i
‘ ‘:‘ Helel i D
12 11 10 9 8 7 _llt%; \:,
1)3333)
Backgammon: 10%Y states Go: 10170 states

5/3/2023 AA203 | Lecture 15

ow can we scale the methods for model-free RL we developed over the last lectures?

All those problems where
we have a continuous state
space

22

Value function approximation

» S0 far we used lookup tables to represent value functions:
» One entry for every state x in V(x)

« One entry for every state-action pair (x, 1) in OQ(x, u)

* Inlarge MDPs, lookup table might lbe prohibitive. For two main reasons:
* Memory: too many actions/states to store

« Sparsity/Curse of dimensionality: learning the value of each state/action pair individually might take too long

Solution:

« Estimate the value function through function approximation, i.e., define a parametric function with parameters &

O,(x, u) = Q(x, u)
V(x) = V(x)

— Represent the value function compactly (depends only on parameters 6)

— (Generalize across states (avoid having to visit the entire state-action space by generalizing from seen
to unseen states)

5/3/2023 AA203 | Lecture 15

23

Different types of value function approximations
V(x) Q(x, u) Ox, uy) Q) O(x,)

| I
l

|

X X U

There are many possible function approximators
* Linear regression, Neural network, Random forest, Nearest neighbor, etc.

AA203 | Lecture 15

Approximating value tn. by (stochastic) gradient descent

Goal: find the parameter vector @ that minimizes the mean-squared error between the estimated value \A/@(x) and the true
value V_(x)

J(0) = B, |V,0) = V)

Gradient descent converges to a local minimum

1
AO =~ =aVyJ(0)

— o, [(Vﬂ(x) _ f/@(x)) vm(x)]

Stochastic GD samples the gradient
AO = a (V,,(x) _ f/@(x)) V., V,00)

5/3/2023 AA203 | Lecture 15

Approximating value tn. by (stochastic) gradient descent

In the previous slide, we assumed to know the true value function V_ — in RL there is no supervisor, only reward

In practice, we use a target for V_

* Monte-Carlo: the target is the return

AO = a (Gt— f/@(xt)) v, Vx)

* Temporal-Difference: the target is the TD target

AO = o (rt + oV,)— Vg(xt)) V,V,(x)

5/3/2023 AA203 | Lecture 15

26

INturtion

MC

D

5/3/2023

X1

U, r
X, Uy, 1y 1- "1 —@

%%)

Tabular ‘A/(x)

Tabular ‘A/(x)

1) Compute return G, = r, + yr, 1+ ..., Vi

2) Update estimate

V(x) =

V(x) + a(G, — V(x))

1) Compute target r, + }/‘A/(xt +1), Vi

2) Update estimate

V(x) =

Vx) + a(r, + yVix,) — V(x)

AA203 | Lecture 15

1) Collect dataset ¥ = {(x,, G,) }

2) Update &

0=0+a (Gt - f/@(xt)> v, V)

1) Collect dataset D = {(x,, r, + yV,(x,))}
2) Update estimate

0=0+a <rt + yVy(x,) — \A/H(xt)> V,V(x,)

27

Control with function approximation

Starting w Ay, = Q%

Policy evaluation Approximate policy evaluation, §(-,-,w) = g

Policy improvement e-greedy policy improvement

5/3/2023 AA203 | Lecture 15

28

Action-value function approximation

Exactly the same intuitions apply when we try to approximate the action value function:

« Minimize the mean-squared error between the estimated value Qe(x, u) and the true value Q_(x, u)

J(0) = .| 0, 1) = Oy,)|

« Use stochastic gradient descent to find a local minimum

AO =a (Qﬂ(x, u) — Qg(x, u)) VQQQ()C, 1)

Fitted Q-lteration: update @ via stochastic gradient descent on TD target

AO =« (rt + y max Qg (xtH, ut’H)—Qg(xt, ut)) V@QQ(xt, u,)

Ui

5/3/2023 AA203 | Lecture 15

29

oN

. approximat

th N

- Sarsa wi

Example

Isode 12

Ep

Goal

MOUNTAIN CAR

DRSS

9% wus..ssss
WL
AL
e
AR pn".."a"/

Episode 9000

.
e tes S
Potsoane She o=t W
\..;w.....ﬁﬁ«..wm‘\ﬁrﬂil.llu — %
,

pisode 1000

iIsode 104

Ep

i,

71

ay,

A

LA
(L)

v
A
(117
117
7117
ST,

I
/]

e
177
7

4]

1A

30

AA203 | Lecture 15

5/3/2023

The skeleton of fitted Q-learning

Run the policy and observe
(Xps Uy Ty Xy 1)

-

o

Generate samples

S

\-

Fit a model / estimate
return

~

J

v

Improve the policy

Set target

y; « 1, +ymax Qy(x,, 1,)
u

Update @ to minimize

](9) — L, [yt — Qe(xta ur)]

set « (xt) = arg max (J, (xt, ut)

a

Deep Q-Networks (DQN)

One of the most popular Deep RL algorithms and arguably one of the first successes of RL with neural networks

Convolution Convolution Fully connected Fully connected
w w w w

&
o i)
® v o o 0
o
alrlclelc W IS-T]
EEEEEERE

(1) Use deep neural nets to represent Qy in Q- (2) Uses experience replay and fixed
learning Q-targets

5/3/2023 AA203 | Lecture 15

32

https://www.youtube.com/watch?v=TmPfTpjtdgg

Deep Q-Networks (DQN)

(2) Uses experience replay and fixed Q-targets

* These two ideas turned out to be very important to stabilize training. Specifically, these concepts attempt to solve two
ISSUES:

) Samples within a trajectory are highly correlated — makes supervised learning unstable
i) Thetarget r, +y max Q, (xt 41 ut’ +1) is a moving target (i.e., as we update 6, the target of our regression also

Uy
changes)
Intuitively:
» [ake action u, according to e-greedy policy
» Store transition (x,, u,, 1;, X, 1) in replay memory &
+ Sample batch of transitions {(x,, u,, 7;, X, 1);}i..; from 2 (Experience replay decorrelates data)

» Compute Q-learning targets w.r.t. old, fixed parameters ¢
* Optimize MSE between Q-network prediction and Q-learning targets (Fixed targets stabilize the objective)

J(0) = = (Xl T3 Xy)~ D I+ Yy max qu(xt+1’ i) — Qe(xt’ ut)

u

5/3/2023 AA203 | Lecture 15 33

Maximization bias

* |In the algorithms we covered so far, a maximum over estimated values is used implicitly as an estimate of the maximum
value

max Qy(x,, u,) ~ max Q_(x,, u,)
u u

* This can lead to a significant positive bias. For example:

Qe(xta l/tt)

5/3/2023 AA203 | Lecture 15 34

Double Q-learning

» Several possible solutions; in general, want to avoid using max of estimates as estimate of max

» Double Q-learning [van Hasselt, NeurlPS 2010]: use two independent estimates O, O,

. Use one estimate to determine the maximizing action u™® = arg max Q,(x, u)
u

. And the other to provide the estimate of its value Q,(x, u™*) = Q,(x, arg max Q,(x, u))
u

 This estimate will be unbiased

» Alternative approach: maintain two independent g-networks, always use min(Q;, (,) [Fujimoto et al, ICML 2018]

5/3/2023 AA203 | Lecture 15

35

Next time

* Model-free RL: policy optimization methods

5/22/2023

AA203 | Lecture 15

36

References

* Mnih et al. Playing Atari with Deep Reinforcement Learning. 2013
* van Hasselt et al. Double Q-learning. NeurlPS 2010

* Fujimoto et al. Addressing Function Approximation Error in Actor-Critic Methods. ICML 2018

5/3/2023 AA203 | Lecture 15

37

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rLdfJ1gAAAAJ&citation_for_view=rLdfJ1gAAAAJ:WF5omc3nYNoC
https://proceedings.mlr.press/v80/fujimoto18a.html

