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Review: Model predictive control

Consider the discrete-time dynamical system x(t + 1) = f(x(t), u(t)). In model predictive
control (MPC), at each time t we solve the optimal control problem

minimize
u

Vf(xN |t) +
N−1∑
k=0

ℓ(xk|t, uk|t)

subject to x0|t = x(t)
xk+1|t = f(xk|t, uk|t), ∀k ∈ {0, 1, . . . , N − 1}
xk|t ∈ X , ∀k ∈ {0, 1, . . . , N − 1}
xN |t ∈ Xf

uk|t ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

for a sequence {u∗
k|t}

N−1
k=0 . The MPC feedback policy is then u(t) = πMPC(x(t)) := u∗

0|t.

The set of feasible initial states is
X0 := {x ∈ Rn | ∃{uk}N−1

k=0 ⊆ U : {xk}N−1
k=0 ∈ X , xN ∈ Xf},

where x0 = x and xk+1 := f(xk, uk) for all k ∈ {0, 1, . . . , N − 1}.
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Review: Recursive feasibility and stability

Suppose:
The initial MPC problem is feasible, i.e., x(0) ∈ X0.
There exists a feedback policy πf : Rn → Rm that renders Xf invariant subject to state
and input constraints, i.e.,

Xf ⊆ X , πf(x) ∈ U , f(x, πf(x)) ∈ Xf ,

for all x ∈ Xf .
The function f is continuous, and ℓ and Vf are uniformly continuous. Moreover,
f(0, 0) = 0, πf(0) = 0, and ℓ and Vf are positive-definite.
The sets X , U , and Xf are closed and bounded, and each contain the origin.
The terminal cost function Vf : Rn → R satisfies

Vf(f(x, πf(x)))− Vf(x) ≤ −ℓ(x, πf(x))
for all x ∈ Xf .

Then the MPC feedback policy is recursively feasible, and asymptotically stabilizing with region
of attraction X0. Much of this depends on the terminal ingredients (Xf , πf , Vf). 6
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Predictive control versus the real-world

Any type of predictive control assumes the system evolves in a predictable fashion, e.g.,

x(t + 1) = f(x(t), u(t)),

with known f : Rn × Rm → Rn.

In reality, we often instead have

x(t + 1) = f(x(t), u(t), w(t)),

with a possibly time-varying disturbance w(t) that enters our system with currently unknown
structure. The disturbance w(t) can be structured itself, random noise, or some combination
thereof.

What can we hope to do in this situation?
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Goals of robust constrained control

Consider the uncertain system

x(t + 1) = f(x(t), u(t), w(t)),

where we assume w(t) ∈ W for all t and some set W.

The goal of robust constrained control is to design a feedback policy u(t) = π(x(t)) such that:
The state and input robustly satisfy constraints, e.g., x(t) ∈ X and u(t) ∈ U for all t and
all possible realizations of w(t).
The system is robustly stable, e.g., x(t) converges to some bounded neighbourhood of the
origin.
Closed-loop trajectories are “optimal” with respect to some notion of performance, e.g., in
expectation or in the worst-case.
The set of robustly feasible initial states X0 is as large as possible.

Achieving these goals requires some knowledge or assumptions about f and W.
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Linear models with bounded disturbances

In this lecture, we will focus on linear systems with additive bounded disturbances, i.e.,

x(t + 1) = Ax(t) + Bu(t) + w(t),

where (A, B) are known, and w(t) ∈ W with known, bounded W.

The nominal dynamics are linear and time-invariant, but are impacted by a random, bounded
disturbance at each time step.

Despite using a linear model, this setup can be used to handle nonlinear systems, albeit in a
conservative fashion.

The disturbance w(t) is persistent in the sense that it does not converge to zero in the limit.
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Uncertain linear system evolution

Consider the nominal system x̄(t + 1) = Ax̄(t) + Bū(t) alongside the actual system
x(t + 1) = Ax(t) + Bu(t) + w(t), and define the error e(t) := x(t)− x̄(t). Then

e(t + 1) = Ae(t) + B(u(t)− ū(t)) + w(t).

If u(t) = ū(t), then

e(t + 1) = Ae(t) + w(t)

=⇒ e(t) = Ate(0) +
t−1∑
k=0

Akw(t− 1− k)

Define the linear transform AW := {Aw, ∀w ∈ W}. Then the component of the error at
time t corresponding to the disturbance w(t− 1− k) lies in AkW.
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The Minkowski sum and disturbance reachable sets

To characterize the cumulative effect of past disturbances on the error at time t, we need the
Minkowski sum. For two sets X and Y, it is defined by

X ⊕ Y := {x + y | x ∈ X , y ∈ Y}.

For polytopes X = {x | Ax ⪯ b} and Y = {y | Cy ⪯ d}, we have

X ⊕ Y = {x + y | Ax ⪯ b, Cy ⪯ d}
= {z | ∃y : A(z − y) ⪯ b, Cy ⪯ d}

=
{

z | ∃y :
[
A −A
0 C

](
z
y

)
⪯
(

b
d

)}
This is a projection of a polytope from (z, y) onto z.
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The Minkowski sum and disturbance reachable sets

For the nominal state x̄(t + 1) = Ax̄(t) + Bū(t) and actual state
x(t + 1) = Ax(t) + Bu(t) + w(t), the error e(t) := x(t)− x̄(t) with u(t) = ū(t) satisfies

e(t + 1) = Ae(t) + w(t)

=⇒ e(t) = Ate(0) +
t−1∑
k=0

Akw(t− 1− k)

The error at time t lies in the disturbance reachable set (DRS)

Et := {Ate(0)} ⊕
(

t−1⊕
k=0

AkW

)
=W ⊕AW ⊕A2W ⊕ · · · ⊕At−1W ⊕ {Ate(0)}

=⇒ Et+1 = AEt ⊕W, E0 := {e(0)}
where the recursion follows from distributivity of linear transforms over Minkowski sums.
Generally we will set e(0) = 0.

The key idea in robust MPC is to pre-compute DRSs and use them in constraint tightening to
account for all possible disturbance realizations.
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The Pontryagin difference and constraint tightening

To tighten constraint sets, we need the Pontryagin difference. For two sets X and Y, it is
defined by

X ⊖ Y := {x | x + y ∈ X , ∀y ∈ Y}.

For polytopes X = {x | Ax ⪯ b} and Y = {y | Cy ⪯ d}, we have

X ⊖ Y = {x | A(x + y) ⪯ b, ∀y : Cy ⪯ d} =
{

x | Ax ⪯ b− max
y : Cy⪯d

Ay

}
where maxy : Cy⪯d Ay (with the maximum applied element-wise) is the support vector. It can
be computed by solving a linear program for each row of A.
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The Pontryagin difference and constraint tightening

We can use pre-computed DRSs to tighten constraints and pose the new online MPC problem

minimize
u

Vf(x̄N|t) +
N−1∑
k=0

ℓ(x̄k|t, uk|t)

subject to x̄0|t = x(t)
x̄k+1|t = Ax̄k|t + Buk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ Ek, ∀k ∈ {0, 1, . . . , N − 1}
x̄N|t ∈ Xf ⊖ EN

uk|t ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

which predicts forward in time using the nominal state, and relies on the tightened constraints
to ensure the actual state satisfies xk|t ∈ X and xN |t ∈ Xf .

We consider the nominal case (i.e., with w ≡ 0) in our objective. We could also consider the
expected case (e.g., if we knew the distribution of w over W), or the worst case (e.g., if we can
evaluate the maximum over W).
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Robust invariance and robust pre-sets

However, we are not done. We need to ensure the state will remain in Xf , regardless of future
disturbances.

A set Xf is said to be robust positive invariant (RPI) for x(t + 1) = f(x(t), πf(x(t)), w(t)) with
w(t) ∈ W if

f(x, πf(x), w) ∈ Xf , ∀(x, w) ∈ Xf ×W.

Given a set Xf and closed-loop dynamics x(t + 1) = f(x(t), πf(x(t)), w(t)) with w(t) ∈ W, the
robust pre-set of Xf is

pre(Xf ;W) := {x | f(x, πf(x), w) ∈ Xf , ∀w ∈ W},

i.e., the set of states that evolve into Xf after one step regardless of the disturbance realization.

A set Xf is RPI if and only if Xf ⊆ pre(Xf ;W).
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Computing robust pre-sets for linear systems with polytopic constraints

For the autonomous system x(t + 1) = f(x(t)) + w(t) with additive disturbance w(t) ∈ W, the
robust pre-set is

pre(Xf ;W) = {x | f(x) + w ∈ Xf , ∀w ∈ W} = {x | f(x) ∈ Xf ⊖W} = pre(Xf ⊖W),

where pre(·) is the non-robust pre-set operator.

If Xf and W are polytopic, then we can compute Xf ⊖W = {x | Cx ⪯ d} via linear
programming.

If additionally f(x) = Ax, then pre(Xf ;W) = {x | CAx ⪯ d}.
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Computing robust pre-sets for linear systems with polytopic constraints

Consider now the closed-loop system x(t + 1) = f(x(t), πf(x(t))) + w(t) with control
constraint set U . Then the robust pre-set we are interested in is

pre(Xf ;U ,W) =
{

x |
(

f(x, πf(x)) + w
πf(x)

)
∈ Xf × U , ∀w ∈ W

}
=
{

x |
(

f(x, πf(x))
πf(x)

)
∈ (Xf ⊖W)× U

} .

If Xf and W are polytopic, then we can compute Xf ⊖W = {x | Cx ⪯ d} via linear
programming.

If additionally f(x, u) = Ax + Bu, πf(x) = Kfx, and U = {u | Gu ⪯ h}, then

pre(Xf ;U ,W) =
{

x |
(

C(A + BKf)
GKf

)
x ⪯

(
d
h

)}
.
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Computing robust invariant sets for linear systems with polytopic constraints

Variants of recursive feasibility and stability carry over to the robust setting as long as Xf is an
RPI. Generally, we want the maximal RPI (MRPI), i.e., an RPI containing all other RPIs.

We use the fact that Xf is RPI if and only if Xf ⊆ pre(Xf ;U ,W) to develop the following
conceptual algorithm for finding an MRPI.

Input: dynamics f , controller πf , state set X , control set U , disturbance set W
Output: maximal RPI Xf ⊆ X

initialize X prev
f = X , Xf = pre(X prev

f ;U ,W) ∩ X

while Xf ̸= X prev
f

X prev
f ← Xf
Xf ← pre(X prev

f ;U ,W) ∩ X prev
f

return Xf

If the dynamics and controller are linear, and all the sets are polytopic, then we can compute
the robust pre-set at each iteration using the method described previously.
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Example: MRPI for a stabilized double-integrator

Consider the dynamics

x(t + 1) =
([

1 1
0 1

]
+
[

1
0.5

]
K

)
x(t) + w(t),

where w(t) ∈ W with W = {w ∈ R2 | ∥w∥∞ ≤ 0.3}, and K ∈ R1×2 is the infinite-horizon
LQR gain for Q = 0.1I and R = 1. Moreover,

X = {x | ∥x∥∞ ≤ 5}
U = {u | ∥u∥∞ ≤ 1}

=⇒ Xf ⊆ {x | ∥x∥∞ ≤ 5, ∥Kx∥∞ ≤ 1}︸ ︷︷ ︸
“X ” for initialization
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Robust “open-loop” MPC via constraint tightening

With pre-computed DRSs for constraint tightening and an RPI set Xf for
x(t + 1) = (A + BKf)x(t) + w(t) with some stabilizing Kf ∈ Rm×n, we have

minimize
u

Vf(x̄N|t) +
N−1∑
k=0

ℓ(x̄k|t, uk|t)

subject to x̄0|t = x(t)
x̄k+1|t = Ax̄k|t + Buk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ Ek, ∀k ∈ {0, 1, . . . , N − 1}
x̄N|t ∈ Xf ⊖ EN

uk|t ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

The robust “open-loop” MPC policy is u(t) = πMPC(x(t)) := u∗
0|t, which is recursively feasible.

That is, if x(t) ∈ X0, then Ax(t) + BπMPC(x(t)) + w(t) ∈ X0 for all w ∈ W.

Robust “open-loop” MPC potentially has a very small region of attraction, particularly for
systems where A is unstable.
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Open-loop versus closed-loop predictions

minimize
u

Vf(x̄N|t) +
N−1∑
k=0

ℓ(x̄k|t, uk|t)

subject to x̄0|t = x(t)
x̄k+1|t = Ax̄k|t + Buk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ Ek, ∀k ∈ {0, 1, . . . , N − 1}
x̄N|t ∈ Xf ⊖ EN

uk|t ∈ U , ∀k ∈ {0, 1, . . . , N − 1}

Notice that

x(t) = Atx(0) +
t−1∑
k=0

AkBu(t− 1− k) +
t−1∑
k=0

Akw(t− 1− k).

In the “open-loop” MPC problem, we assume uk|t = ūk|t, i.e., that it is chosen based on the
nominal state x̄k|t rather than the actual state xk|t = x̄k|t + ek|t.
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Open-loop versus closed-loop predictions

Notice that

x(t) = Atx(0) +
t−1∑
k=0

AkBu(t− 1− k) +
t−1∑
k=0

Akw(t− 1− k).

In the “open-loop” MPC problem, we assume uk|t = ūk|t, i.e., that it is chosen based on the
nominal state x̄k|t rather than the actual state xk|t = x̄k|t + ek|t.

It would be preferable to optimize for a time-varying policy πt : N≥0 × Rn, such that

u0|t = πt(0, x0|t) = πt(0, x(t))

uk|t = πt(k, xk|t) = πt

(
k, Akx(t) +

k−1∑
i=0

AiBuk−1−i|t +
k−1∑
i=0

Aiwk−1−i|t

)
,

then apply the first optimal control input u∗
0|t = π∗

t (0, x(t)). However, we cannot tractably
optimize over an arbitrary policy πt!
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Closed-loop MPC

In closed-loop MPC, we assume some structure for πt : N≥0 × Rn that allows us to optimize
for it directly. Some options are:

Pre-stabilization Choose πt(k, x) = ūk|t + Kxk|t with a fixed K ∈ Rm×n such that
A + BK is stable, and optimize over ūk|t for each k. This is a simple,
often conservative choice.

Linear feedback Choose πt(k, x) = ūk|t + Kk|txk|t and optimize over ūk|t and Kk|t for
each k. This yields a difficult non-convex problem.

Disturbance feedback Choose πt(k, x) = ūk|t +
∑k−1

i=0 Kki|twi|t and optimize over ūk|t and
{Kki|t}k−1

i=0 for each k. This is equivalent to linear feedback and yields a
convex problem, yet it can be computationally intensive (Goulart et al.,
2006).

Tube MPC Choose πt(k, x) = ūk|t + K(x− x̄k|t) with a fixed K ∈ Rm×n such that
A + BK is stable, and optimize over ūk|t and x̄k|t for each k. This yields
a convex problem and is usually quite effective (Mayne et al., 2005).
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Tube MPC

We will focus on tube MPC, where the key idea is to separate control authority into
a part ū(t) that steers the nominal system x̄(t + 1) = Ax̄(t) + Bū(t) to the origin, and
a part that compensates for deviations from this system, such that

u(t) = ū(t) + K(x(t)− x̄(t)) = ū(t) + Ke(t)

for some pre-computed gain K ∈ Rm×n that stabilizes the nominal system.

The dynamics of the error e(t) := x(t)− x̄(t) are given by

e(t + 1) = (A + BK)e(t) + w(t)

=⇒ e(t) = (A + BK)te(0) +
t−1∑
k=0

(A + BK)kw(t− 1− k)

where w(t) ∈ W. Since A + BK is stable and W is assumed to be bounded, there must be
some set E∞ such that e(t) ∈ E∞ for all t ≥ 0.
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Tube MPC

Tube MPC computes a nominal pair x̄·|t = {x̄k|t}N
k=0 and

ū·|t = {ūk|t}N−1
k=0 , while planning to apply the policy

uk|t = ūk|t + K(xk|t − x̄k|t)

to account for future information gain.

We must ensure all possible trajectories satisfy the constraints, i.e., that {x̄k|t} ⊕ E∞ ⊆ X and
{ūk|t} ⊕KE∞ ⊆ U .

We usually just apply the first input u∗
0|t = ū∗

0|t + K(x(t)− x̄∗
0|t), but the planned feedback law

can serve as a valid sub-optimal plan (e.g., in case we do not have time to solve another MPC
problem right away).
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Tube MPC

Tube MPC computes a nominal pair x̄·|t = {x̄k|t}N
k=0 and

ū·|t = {ūk|t}N−1
k=0 , while planning to apply the policy

uk|t = ūk|t + K(xk|t − x̄k|t)

to account for future information gain.

Overall, we need to:
Compute the set E∞ that the error will remain inside.
Modify the constraints so {x̄k|t} ⊕ E∞ ⊆ X and {ūk|t} ⊕KE∞ ⊆ U .
Formulate the tube MPC problem as a convex optimization.

We can then prove that the constraints are robustly satisfied, the tube MPC problem is
recursively feasible, and the closed-loop system is robustly stable.
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Computing the limiting DRS

The set E∞ is precisely the limiting DRS, i.e.,

E∞ := lim
t→∞

Et = lim
t→∞

(
{(A + BK)te(0)} ⊕

(
t−1⊕
k=0

(A + BK)kW

))
Input: initial error e(0), stable matrix A + BK, disturbance set W
Output: limiting DRS (i.e., mRPI) E∞

initialize Eprev
∞ = {e(0)}, E∞ = {(A + BK)e(0)} ⊕W

while E∞ ̸= Eprev
∞

Eprev
∞ ← E∞
E∞ ← (A + BK)Eprev

∞ ⊕W
return E∞

Generally we use e(0) := x(0)− x̄(0) = 0. A finite t such that Et+1 = Et does not always exist,
but usually a large number of iterations is good enough.

The set E∞ is referred to as the minimal RPI (mRPI) for e(t + 1) = (A + BK)e(t) + w(t),
since it is the smallest set that the error e(t) remains in despite the disturbance w(t) ∈ W.
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Example: Limiting DRS for a stabilized double-integrator

Consider the dynamics

e(t + 1) =
([

1 1
0 1

]
+
[

1
0.5

]
K

)
e(t) + w(t),

where w(t) ∈ W with W = {(w1, w2) ∈ R2 | |w1| ≤ 0.01, |w2| ≤ 0.1}, and K ∈ R1×2 is the
infinite-horizon LQR gain for Q = I and R = 10.

The recursion Et+1 = AEt ⊕W converges
to E∞ as t→∞.

The error e(t) remains inside E∞ for all t
and all realizations of w(t) ∈ W.
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Tube MPC

We fix K such that A + BK is stable and compute E∞ offline. We want {x̄k|t} ⊕ E∞ ⊆ X
and {ūk|t} ⊕KE∞ ⊆ U to hold, for which x̄k|t ∈ X ⊖ E∞ and ūk|t ∈ U ⊖KE∞, respectively,
are sufficient conditions.

The tube MPC problem is then

minimize
x̄,ū

Vf(x̄N|t) +
N−1∑
k=0

ℓ(x̄k|t, ūk|t)

subject to x(t) ∈ {x̄0|t} ⊕ E∞

x̄k+1|t = Ax̄k|t + Būk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ E∞, ∀k ∈ {0, 1, . . . , N − 1}
x̄N|t ∈ Xf

ūk|t ∈ U ⊖ KE∞, ∀k ∈ {0, 1, . . . , N − 1}

The tube MPC policy is u(t) = πtube(x(t)) := ū∗
0|t + K(x(t)− x̄0|t).
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Terminal ingredients for tube MPC

Suppose:
The initial tube MPC problem is feasible, i.e., x(0) ∈ X0.
There exists a feedback policy πf : Rn → Rm that renders Xf invariant subject to
tightened state and input constraints, i.e.,

Xf ⊆ X ⊖ E∞, πf(x̄) ∈ U ⊖KE∞, Ax̄ + Bπf(x̄) ∈ Xf ,

for all x̄ ∈ Xf .
The functions ℓ and Vf are uniformly continuous. Moreover, πf(0) = 0, and ℓ and Vf are
positive-definite.
The sets X , U , and Xf are closed and bounded, and each contain the origin.
The terminal cost function Vf : Rn → R satisfies

Vf(Ax̄ + Bπf(x̄))− Vf(x̄) ≤ −ℓ(x̄, πf(x̄))
for all x̄ ∈ Xf .

Then the tube MPC feedback policy is recursively feasible. Moreover, for any x(0) ∈ X0, we
have limt→∞ mine∈E∞∥x(t)− e∥ = 0, i.e., “x(t)→ E∞”. 33



Constraint-tightening MPC

Consider planning with uk|t = ūk|t + K(xk|t − x̄k|t) and instead storing the DRSs {Et}N
t=0 for

e(t + 1) = (A + BK)e(t) + w(t) instead of trying to find E∞.

The robust closed-loop constraint-tightening (CT) MPC problem is

minimize
x̄,ū

Vf(x̄N|t) +
N−1∑
k=0

ℓ(x̄k|t, ūk|t)

subject to x̄0|t = x(t)
x̄k+1|t = Ax̄k|t + Būk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ Ek, ∀k ∈ {0, 1, . . . , N − 1}
x̄N|t ∈ Xf ⊖ EN

ūk|t ∈ U ⊖ KEk, ∀k ∈ {0, 1, . . . , N − 1}

where Xf ⊆ X is an RPI set for x(t + 1) = Ax(t) + Bπf(x(t)) + w(t), with some stabilizing πf
subject to πf(x) ∈ U for all x ∈ Xf . Usually we just use πf(x) = Kx.

The CT-MPC policy is u(t) = πCT(x(t)) := K(x̄∗
0|t − x(t)) + ū∗

0|t = ū∗
0|t.
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Characteristics of closed-loop MPC

The key idea behind closed-loop robust MPC (both tube and CT) is to separate control
authority into a part that steers the nominal dynamics, and a part that compensates for
deviations. We optimize the nominal trajectory, and tighten constraints to ensure deviations do
not cause them to be violated.

Closed-loop robust MPC is less conservative than “open-loop” robust MPC, since we are
planning for future information gain. Closed-loop robust MPC also works better for open-loop
unstable systems. The optimization problem is convex and simple to solve.

However, closed-loop robust MPC is still sub-optimal and has a reduced feasible set in
comparison to nominal MPC. We also need to be able to characterize W, and E∞ or {Et}N

t=0.
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Adaptation in MPC

Now consider the model
x(t + 1) = Ax(t) + Bu(t) + w(t) = Ax(t) + Bu(t) + g(x(t), u(t)) + v(t)︸ ︷︷ ︸

=w(t)

,

where (A, B) are known, and g : Rn × Rm → Rn represents unknown dynamics.

Given bounded constraint sets X and U , we assume the model error w(t) is bounded such that
w := g(x, u) + v ∈ W,

for all x ∈ X , u ∈ U , and v ∈ V for some known bounded sets W and V.

Since now we know part of the disturbance is caused by unmodelled dynamics, our goal now is
to learn how to model g(x, u) while doing MPC feedback in closed-loop. Approaches to this
scenario generally use both

the nominal linear model x̄(t + 1) = Ax̄(t) + Bū(t) for prediction with tightened
constraints to ensure robustness to all w(t) ∈ W, and
a learned nonlinear model x(t + 1) = Ax(t) + Bu(t) + ĝ(x(t), u(t)) to evaluate the cost
function. 37



Adaptation in MPC

Suppose we maintain an estimate ĝ(t, x, u) of g(x, u). Then we can use the CT-MPC problem

minimize
x̄,ū,x̂

Vf(x̂N |t) +
N−1∑
k=0

ℓ(x̂k|t, ūk|t)

subject to x̄0|t = x(t)
x̂0|t = x(t)
x̂k+1|t = Ax̂k|t + Būk|t + ĝ(t, x̂k|t, ūk|t), ∀k ∈ {0, 1, . . . , N − 1}
x̄k+1|t = Ax̄k|t + Būk|t, ∀k ∈ {0, 1, . . . , N − 1}
x̄k|t ∈ X ⊖ Ek, ∀k ∈ {0, 1, . . . , N − 1}
x̄N |t ∈ Xf ⊖ EN

ūk|t ∈ U ⊖KEk, ∀k ∈ {0, 1, . . . , N − 1}

where Xf ⊆ X is RPI for x(t + 1) = (A + BK)x(t) + w(t) subject to Kx ∈ U for all x ∈ Xf .

The model x̂(t + 1) = Ax̂(t) + Bū(t) + ĝ(t, x̂(t), ū(t)) should be a better estimate of the true
dynamics, and so we use it in the cost function instead of the nominal dynamics.
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Adaptation in MPC

How should we adapt our estimate ĝ(t, x, u) of g(x, u) over time?

Assuming we can observe the full state x(t), adaptation will generally rely on the
“measurement”

y(t) := x(t)−Ax(t− 1)−Bu(t− 1) = g(x, u) + v(t),
for each t ≥ 1.

The estimator ĝ could be structured as a neural network or Gaussian process, but a
linear-in-parameter model of the form

ĝ(t, x, u) = Φ(x, u)â(t)
with known regressor matrix Φ : Rn × Rm → Rp and adapted parameters â ∈ Rp leads to
closed-form, recursive least-squares updates for â(t) if we define

â(t) := min
a

t∑
i=1
∥Φ(x(i), u(i))a− y(i)∥2

2

at time t. 39



Adaptation in MPC

In the CT-MPC problem

minimize
x̄,ū,x̂

Vf(x̂N|t) +
N−1∑
k=0

ℓ(x̂k|t, ūk|t)

subject to x̄0|t = x(t)
x̂0|t = x(t)
x̂k+1|t = Ax̂k|t + Būk|t + ĝ(t, x̂k|t, ūk|t),
x̄k+1|t = Ax̄k|t + Būk|t,

x̄k|t ∈ X ⊖ Ek,

x̄N|t ∈ Xf ⊖ EN

ūk|t ∈ U ⊖ KEk,

where Xf ⊆ X is RPI for x(t+1) = (A+BK)x(t)+
w(t) subject to Kx ∈ U for all x ∈ Xf .

Only the cost depends on the states of
the learned model. For quadratic costs
with a linear model, the objective is
convex. For a nonlinear model, we can
still use x̄k|t to achieve convexity.
Recursive feasibility does not depend
on ĝ, so in some sense safety is
decoupled from performance.
The estimate ĝ can be updated
asynchronously, since we assume
g(x, u) + v ∈ W for all x ∈ X , u ∈ U ,
and v ∈ V.

To grow the size of the feasible set and hence decrease conservatism over time, it would be
better to use our improving estimate ĝ to adapt the uncertainty set W as well.
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Adaptive robust MPC via certainty-equivalent cancellation

Consider the dynamics

x(t + 1) = Ax(t) + Bu(t) + g(x(t)) + v(t),

where g : Rn → Rn is nonlinear and unknown, and v(t) ∈ V for some known bounded set V.

Assume m ≤ n and B ∈ Rn×m has full column rank (i.e., the system is not overactuated and
there are no redundant actuators). Then B has a well-defined left-inverse

B† := (BTB)−1
BT,

since BTB ∈ Rm×m has full rank and B†B = Im.

We can then do the decomposition g(x) = BB†g(x) + (I −BB†)g(x), so

x(t + 1) = Ax(t) + B(u(t) + B†g(x)︸ ︷︷ ︸
matchable

) + (I −BB†)g(x)︸ ︷︷ ︸
unmatchable

+ v(t),

where B†g(x) = arg minu∥Bu− g(x)∥2 and (I −BB†)g(x) /∈ range(B).
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Adaptive robust MPC via certainty-equivalent cancellation

We will study an adaptive robust MPC (ARMPC) method from Sinha et al. (2022, 2023)
which separates control authority into

a part ū(t) that steers the nominal system x̄(t + 1) = Ax̄(t) + Bū(t) to the origin,
a part Ke(t) = K(x(t)− x̄(t)) that compensates for deviations from this system, with
some pre-computed gain K ∈ Rm×n that stabilizes the nominal system, and
the certainty equivalent cancellation term −B†ĝ(t, x) with the estimate ĝ of g.

Sinha et al. (2023) constructs an MPC optimization that “plans to use” the feedback policy

u(t) = ū(t) + Ke(t)−B†ĝ(t, x(t)) = ū(t) + Ke(t)−B†ĝ(t, x(t)),

for the system x(t + 1) = Ax(t) + Bu(t) + g(x(t)) + v(t).
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Adaptive robust MPC via certainty-equivalent cancellation

Sinha et al. (2023) constructs an MPC optimization that “plans to use” the feedback policy

u(t) = ū(t) + K(x(t)− x̄(t))−B†ĝ(t, x(t)) = ū(t) + Ke(t)−B†ĝ(t, x(t)),

for the system x(t + 1) = Ax(t) + Bu(t) + g(x(t)) + v(t). This would yield the closed-loop
error dynamics

e(t + 1) = (A + BK)e(t) + (I −BB†)g(x(t)) + BB†(g(x(t))− ĝ(t, x(t))) + v(t)︸ ︷︷ ︸
=:d(t)

,

where the compound disturbance d(t) comprises the unmatched uncertainty (I −BB†)g(x),
the estimation error BB†(ĝ(t, x)− g(x)), and the irreducible disturbance v(t).

Sinha et al. (2023) detail how to do constraint tightening with this feedback law. We will just
focus on some details regarding how to adaptively bound the compound disturbance d(t).

Our intuition is that if ĝ(t, x) = g(x), then the resulting d(t) = (I −BB†)g(x(t)) + v(t) would
lie in a smaller set than if we had just used u(t) = ū(t) + Ke(t), which would instead yield
d(t) = g(x(t)) + v(t).
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Adaptive robust MPC via certainty-equivalent cancellation

The closed-loop error dynamics are

e(t + 1) = (A + BK)e(t) + (I −BB†)g(x(t)) + BB†(g(x(t))− ĝ(t, x(t))) + v(t)︸ ︷︷ ︸
=:d(t)

,

How can we characterize a bounded set D such that d(t) ∈ D for all t ≥ 0?

We know v ∈ V and g(x) + v ∈ W for all x ∈ X , where V and W are bounded sets. Then
there must be some bounded set G such that g(x) ∈ G for all x ∈ X .

Suppose we can bound the estimation error. Specifically, suppose g(x)− ĝ(t, x) ∈ G̃(t) for all
t ≥ 0, where G̃(t) is a bounded set.

Suppose G̃(t + 1) ⊆ G̃(t) for all t ≥ 0, i.e., our estimate at time t does not degrade. Then

d(t) ∈ (I −BB†)G ⊕BB†G̃(k)⊕ V

for all t ≥ 0 and k ≤ t.
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Adaptive robust MPC via certainty-equivalent cancellation

Suppose G̃(t + 1) ⊆ G̃(t) for all t ≥ 0, i.e., our estimate at time t does not degrade. Then

d(t) ∈ (I −BB†)G ⊕BB†G̃(k)⊕ V

for all t ≥ 0 and k ≤ t.

While we could just use G̃(0) for all t ≥ 0, the hope is that we can improve our estimate over
time to shrink G̃(t) and hence get a tighter bounding set around d(t) to reduce conservatism.

Suppose g(x) = Φ(x)a for some known regressor Φ(x) ∈ Rn×p and unknown parameters
a ∈ Rp. If we use the RLS estimator ĝ(t, x) = Φ(x)â(t), then

g(x)− ĝ(t, x) = Φ(x)(a− â(t)) = Φ(x)ã(t).

We know g(x) = Φ(x)a is bounded for all x ∈ X . Without loss of generality, assume
∥Φ(x)∥ ≤ 1 and that ∥a∥ is bounded.
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Adaptive robust MPC via certainty-equivalent cancellation

Suppose g(x) = Φ(x)a for some known regressor Φ(x) ∈ Rn×p and unknown parameters
a ∈ Rp. If we use the RLS estimator ĝ(t, x) = Φ(x)â(t), then

g(x)− ĝ(t, x) = Φ(x)(a− â(t)) = Φ(x)ã(t).
We know g(x) = Φ(x)a is bounded for all x ∈ X . Without loss of generality, assume
∥Φ(x)∥ ≤ 1 and that ∥a∥ is bounded.

Assume we know an initial estimate â(0) and a bounded set Ã(0) such that ã(0) ∈ Ã(0). Then
∥g(x)− ĝ(0, x)∥ = ∥Φ(x)ã(0)∥ ≤ ∥Φ(x)∥∥ã(0)∥ ≤ ∥ã(0)∥,

and so g(x)− ĝ(0, x) ∈ Ã(0).

If we assume that our parameter error bound never grows as we collect more data, then
Ã(t + 1) ⊆ Ã(t) for all t ≥ 0, and so

g(x)− ĝ(t, x) ∈ Ã(k),
for all t ≥ 0 and k ≤ t. This monotonicity property holds with high probability for confidence
ellipsoids of the Bayesian RLS estimator with a suitably calibrated prior (Lew et al., 2022).
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Example: Planar drone on a windy day

Consider a planar drone on a windy day. We linearize and discretize the dynamics, and try to
learn the nonlinear effect of wind drag parameterized by the wind speed V̂wind.

We compare ARMPC (blue line) to non-adaptive tube MPC (red line), with wind straight down
from above (left) and wind at an incidence angle of 22.5 degrees (right). Tube MPC causes
the drone to drift significantly, while ARMPC quickly learns to compensate for the wind drag
(Sinha et al., 2023).
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Next class

Reinforcement learning
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