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Outline of the next two lectures

3

MPC: Basic setting and key ideas

Main design choices:

• Persistent feasibility

• Stability


Implementation aspects of MPC

Further reading:

• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.

• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.
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Roadmap



Model Predictive Control (MPC)
Let’s consider the problem of controlling a F1 such that:

Objective: Minimize lap time


Constraints:

• Avoid other cars

• Stay on road

• Don’t skid

• Limited acceleration

An intuitive approach would be to use formulate this as an optimization problem 
and resort to open-loop approaches to compute a full trajectory 

What if something unexpected happens (e.g., unseen obstacle)?  



Model Predictive Control (MPC)
Model predictive control (or, more broadly, receding horizon control) entails 
solving finite-time optimal control problems in a receding horizon fashion


Specifically, given a model of the system:

• Obtain a state measurement

• Generate a plan by solving a finite-time open-loop problem for a pre-specified 

planning horizon 

• Execute the first control action

• Repeat


Receding horizon introduces feedback



Model Predictive Control (MPC)
x

t

t

u

Horizon

Predicted output 
Key steps:

• At each sampling time 𝑡, solve an open-loop optimal 

control problem over a finite horizon

• Apply optimal input signal during the following 

sampling interval 

• At the next time step , solve new optimal 

control problem based on new measurements of the 
state over a shifted horizon

[t, t + 1)
t + 1

Reference
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MPC in the wild

Perception Driven Model Predictive Control

Slide by Scott Kuindersma 
(Boston Dynamics)
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Basic formulation - Linear System
• Consider the problem of regulating to the origin the discrete-time linear time-invariant system

x(t + 1) = Ax(t) + Bu(t), x(t) ∈ ℝn, u(t) ∈ ℝm

Subject to constraints


Where the sets  and  are polyhedraX U

• Historical note: MPC was originally developed in the context of chemical plant control

x(t) ∈ X, u(t) ∈ U, t ≥ 0 Cx ≤ d
c ⊤
i x ≤ di
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Notation
•  is the state of the system at time 

•  is the state of the model at time , predicted at time  obtained by starting from the current state 

 and applying to the system model 


, 


the input sequence 


•  to denote the input  at time  computed at time 


Note: 

x(t) t
xt+k∣t t + k t
xt|t = x(t)

xt+1|t = Axt|t + But|t

ut|t, …, ut+k−1|t

ut+k∣t u t + k t

x3∣1 ≠ x3∣2
x
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Notation

Let  be the optimal solution to the short-term problem. The first element of 

 is applied to the system


.


The optimization problem is then repeated at time  based on the new state 


Thus, we define the receding horizon control law as




Which results in the following closed-loop systems:




(Preview: a central question will be to characterize the behavior of the closed-loop system)

U*t→t+N∣t := {u*t∣t, u*t+1∣t, …, u*t+N−1∣t}
U*t→t+N∣t

u(t) = u*t|t(x(t))

t + 1 xt+1|t+1 = x(t + 1)

πt(x(t)) := u*t∣t(x(t))

x(t + 1) = Ax(t) + Bπt(x(t)) := fcl(x(t), t)
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Basic formulation - OCP
Assume that a full measurement of the state  is available at the current time 


The finite-time optimal control problem solved at each stage is

x(t) t

Why add a terminal cost and terminal constraints 
if what I really care about is the long-horizon 
problem?

 and  are key design decisionslT Xf

Goal: Ensure that the short-horizon problem 
models the long-horizon problem

•   approximates the “tail” of the cost


•   approximates the “tail” of the constraints
lT
Xf

J*t (x(t)) = min
ut∣t,…,ut+N−1∣t

lT (xt+N∣t) +
N−1

∑
k=0

l (xt+k∣t, ut+k∣t)
s.t xt+k+1∣t = Axt+k∣t + But+k∣t, k = 0,…, N − 1

xt+k∣t ∈ X, k = 0,…, N − 1
ut+k∣t ∈ U, k = 0,…, N − 1
xt+N∣t ∈ Xf

xt|t = x(t)
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Simplifying the notation: time-invariant systems
Note that the system, the constraints, and the cost function are time-invariant, hence, to simplify the notation, we (i) 
remove  and (ii) set , in the finite-time optimal control problem, namely| t t = 0

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)
s.t xk+1 = Axk + Buk, k = 0,…, N − 1

xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)

• Denote the optimal solution to the short-term problem 


• With the new notation, the closed-loop system becomes 


U*0 (x(t)) = {u*0 , …, u*N−1}
x(t + 1) = Ax(t) + Bπ(x(t)) := fcl(x(t))
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Typical cost function

• 2-norm (i.e., constrained LQR)

lT (xN) = xT
NPxN, c (xk, uk) = xT

k Qxk + uT
k Ruk, P ≽ 0,Q ≽ 0,R ≻ 0

• 1-norm

lT (xN) = PxN p
l (xk, uk) = Qxk p

+ Ruk p
, p = 1 or ∞

where  are full column ranksP, Q, R
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Online model predictive control (MPC v0)
repeat 

measure the state  at time instant 

obtain  by solving finite-time optimal control problem


if  = ∅ then ‘problem infeasible’ stop 


apply the first element  of  to the system


wait for the new sampling time 


x(t) t
U*0 (x(t))

U*0 (x(t))

u*0 U*0 (x(t))

t + 1
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MPC Features
Pros:
• Any model


• Linear

• Nonlinear

• Single/Multivariable

• Constraints


• Any objective

• Sum of squared errors

• Sum of absolute errors

• Economic objective

• Minimum time

Cons:
• Computationally demanding (important when 

embedding controller on hardware)

• May or may not be feasible

• May or may not be stable
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Example: Loss of feasibility

x(t + 1) = [1 1
0 1] x(t) + [0

1] u(t)
Consider the double-integrator

Subject to input and state constraints

−0.5 ≤ u(k) ≤ 0.5, k = 0,…,3

[−5
−5] ≤ x(t) ≤ [5

5], k = 0,…,3

Consider a receding horizon controller that solves the optimization problem , 

with ,  

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)

lT (xN) = x⊤
NPxN, l (xk, uk) = x⊤

k Qxk + u⊤
k Ruk N = 3, P = Q = [1 0

0 1], R = 10, Xf = ℝ2
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Example: Loss of feasibility
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Example: Dependency on parameters

x(t + 1) = [2 1
0 0.5] x(t) + [1

0] u(t)
Consider the unstable system

Subject to input and state constraints

−1 ≤ u(k) ≤ 1, k = 0,…, N − 1

[−10
−10] ≤ x(t) ≤ [10

10], k = 0,…, N − 1

Consider a receding horizon controller that solves the optimization problem , 

with ,  

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)

lT (xN) = x⊤
NPxN, l (xk, uk) = x⊤

k Qxk + u⊤
k Ruk Q = [1 0

0 1], Xf = ℝ2, P = 0

Question: can we tune parameters and solve this issue?
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Example: Dependency on parameters

Take-away:
Parameters for receding horizon 
control influence the behavior of the 
resulting closed-loop trajectories in a 
complex manner



AA203 | Lecture 115/8/2023 20

Main implementation issues
1. The controller may lead us into a situation where after a few steps the finite-time optimal control problem is 

infeasible → persistent feasibility issue 


2. Even if the feasibility problem does not occur, the generated control inputs may not lead to trajectories that 
converge to the origin (i.e., closed-loop system is unstable) → stability issue


Key question: how do we guarantee that such a “short-sighted” strategy leads to effective long-term behavior?


One could consider two distinct approaches for doing this: 

• Analyze closed-loop behavior directly → generally very difficult

• Derive conditions on 


• terminal function  so that closed-loop stability is guaranteed


• terminal constraint set  so that persistent feasibility is guaranteed
lT

Xf
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Outline of the next two lectures

3

MPC: Basic setting and key ideas

Main design choices:


Further reading:

• F. Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid 

Systems, 2017.

• J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory, 

Computation, and Design, 2017.

• Persistent feasibility
• Stability


Implementation aspects of MPC
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Addressing persistent feasibility
Goal: design MPC controller so that feasibility for all future times is guaranteed


Approach: leverage tools from invariant set theory


Def: Set of feasible initial states




A control input can be found only if 

X0 := {x0 ∈ X ∣ ∃(u0, …, uN−1)  such that xk ∈ X, uk ∈ U, k = 0,…, N − 1, xN ∈ Xf where xk+1 = Axk + Buk, k = 0,…, N − 1}

x(0) ∈ X0

J*0 (x(t)) = min
u0,…,uN−1

lT (xN) +
N−1

∑
k=0

l (xk, uk)
s.t xk+1 = Axk + Buk, k = 0,…, N − 1

xk ∈ X, k = 0,…, N − 1
uk ∈ U, k = 0,…, N − 1
xN ∈ Xf

x0 = x(t)



AA203 | Lecture 115/8/2023 23

Controllable sets
For the autonomous system  with constraints , the one-step controllable set 
to set  is defined as


x(t + 1) = ϕ(x(t)) x(t) ∈ X, u(t) ∈ U
S

Pre(S) := {X ∈ ℝn : ϕ(X) ∈ S}

For the system  with constraints , the one-step controllable set to set 
 is defined as


x(t + 1) = ϕ(x(t), u(t)) x(t) ∈ X, u(t) ∈ U
S

Pre(S) := {x ∈ ℝn : ∃u ∈ U such that ϕ(X, U) ∈ S}
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Control invariant sets
A set  is said to be a control invariant set for the system  with constraints 

, if:

 such that  for all 

C ⊆ X x(t + 1) = ϕ(x(t), u(t))
x(t) ∈ X, u(t) ∈ U

x(t) ∈ C ⇒ ∃u ∈ U ϕ(x(t), u(t)) ∈ C t

The set  is said to be the maximal control invariant set for the system  with 
constraints , if it is control invariant and contains all control invariant sets contained in 

C∞ ⊆ X x(t + 1) = ϕ(x(t), u(t))
x(t) ∈ X, u(t) ∈ U X

C1 C2

Consider the 
union of two 
control invariant 
sets

C1

∃u ∈ U

Let’s define the equivalent for autonomous systems: 

• a set  is said to be a positive invariant set for the system  if 

• the maximal positive invariant set contains all other positive invariant sets

A ⊆ X x(t + 1) = ϕ(x(t)) x(t) ∈ A ⇒ ϕ(x(t)) ∈ A

C1

ϕ( ⋅ )x(t)

x(t + 1)

Note on implementation: these sets can be computed by using the MPT toolbox (multi-parametric toolbox) https://www.mpt3.org/ 

https://www.mpt3.org/


AA203 | Lecture 115/8/2023 25

Persistent feasibility lemma
Define the “truncated” feasibility set:





Feasibility lemma: 

If set  is a control invariant set for system , then the 
MPC law is persistently feasible 

X1 := {x1 ∈ X ∣ ∃(u1, …, uN−1)  such that xk ∈ X, uk ∈ U, k = 1,…, N − 1 xN ∈ Xf where xk+1 = Axk + Buk, k = 1,…, N − 1}

X1 x(t + 1) = Ax(t) + Bu(t), x(t) ∈ X, u(t) ∈ U, t ≥ 0
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Persistent feasibility lemma
Proof: 

1. Consider the preimage of , 


2. Since  is control invariant, it means that 

3. Thus 


4. One can write 


5. Thus,  


6. Pick some . Let  be the solution to the finite-time optimization problem, and  be the first control. 

Let  


7. Since  is clearly feasible, one has . Since , one has 


8. Hence the next optimization problem is feasible!

X1 Pre (X1) = {x ∈ ℝn : ∃u ∈ U such that Ax + Bu ∈ X1}
X1 ∀x ∈ X1, ∃u ∈ U such that Ax + Bu ∈ X1

X1 ⊆ Pre (X1) ∩ X
X0 = {x0 ∈ X ∣ ∃u0 ∈ U such that Ax0 + Bu0 ∈ X1} = Pre (X1) ∩ X

X1 ⊆ X0

x0 ∈ X0 U*0 u*0
x1 = Ax0 + Bu*0

U*0 x1 ∈ X1 X1 ⊆ X0 x1 ∈ X0
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Practical significance
• For , we can set . If we choose the terminal set to be control invariant, then MPC will be 

persistently feasible independent of chosen control objectives and parameters 

• Designer can choose the parameters to affect performance (e.g., stability) 


• How to extend this result to N > 1?


N = 1 Xf = X1
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Persistent feasibility theorem
Feasibility theorem: 

If set  is a control invariant set for system , then the 

MPC law is persistently feasible 

Xf x(t + 1) = Ax(t) + Bu(t), x(t) ∈ X, u(t) ∈ U, t ≥ 0

Proof: 

1. Define the “truncated” feasibility set:





2. Due to the terminal constraint, we know that 


3. Since  is a control invariant set, there exists a  such that 


4. The above is exactly the requirement to belong to set  


5. Thus, 


6. We have just proved that  is control invariant 


7. Repeating this argument, one can recursively show that  are control invariant

8. The persistent feasibility lemma then applies

XN−1 := {xN−1 ∈ X ∣ ∃uN−1 such that xN−1 ∈ X, uN−1 ∈ U xN ∈ Xf where xN = AxN−1 + BuN−1}
AxN−1 + BuN−1 = xN ∈ Xf

Xf u ∈ U x+ = AxN + BuN ∈ Xf

XN−1

AxN−1 + BuN−1 = xN ∈ XN−1

XN−1

XN−2, XN−3, …, X1
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Practical aspects of persistent feasibility
• The terminal set  is introduced artificially for the sole purpose of leading to a sufficient condition for persistent 

feasibility 

• We want it to be large so that it does not compromise closed-loop performance 

• Though it is simplest to choose , this is generally undesirable 

• We’ll discuss better choices in the next lecture

Xf

Xf = {0}
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Next time

• Stability of MPC

• Explicit MPC

• Practical considerations


