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Outline of the next two lectures

MPC: Basic setting and key ideas

Main design choices:
* Persistent feasibility
o Stability

Implementation aspects of MPC

Further reading:
« F Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid

Systems, 2017.
» J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,

Computation, and Design, 2017.
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Model Predictive Control (MPC)

Let’s consider the problem of controlling a F1 such that:

Objective: Minimize lap time

Constraints:

* Avoid other cars

« Stay on road
 Don’t skid

* Limited acceleration

An intuitive approach would be to use formulate this as an optimization problem
and resort to open-loop approaches to compute a full trajectory

What if something unexpected happens (e.g., unseen obstacle)?



Model Predictive Control (MPC)

Model predictive control (or, more broadly, receding horizon control) entails
solving finite-time optimal control problems in a receding horizon fashion

Specifically, given a model of the system:

« (Obtain a state measurement

* (Generate a plan by solving a finite-time open-loop problem for a pre-specified
planning horizon

» EXxecute the first control action

* Repeat

[ Do | Plan
[ Do | Plan

F Plan
Time
>

Receding horizon introduces feedback




Model Predictive Control (MPC)

X # Reference

Predicted output

Key steps:
o » At each sampling time ¢, solve an open-loop optimal
g control problem over a finite horizon
[ * Apply optimal input signal during the following
sampling interval [z, + 1)
14+ » At the next time step 7 + 1, solve new optimal
control problem based on new measurements of the

® state over a shifted horizon

Horizon
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Basic formulation - Linear System

» (Consider the problem of regulating to the origin the discrete-time linear time-invariant system
X(t+ 1) = Ax(?) + Bu(?), x(r) € R", u(r) € R™

Subject to constraints

x(H)eX, u@)elU, t>0

Where the sets X and U are polyhedra

» Historical note: MPC was originally developed in the context of chemical plant control
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Notation

» x(?) is the state of the system at time ¢

* X,1x|; IS the state of the model at time £ + k, predicted at time t obtained by starting from the current state
Xyjp = x(?) and applying to the system model
A1)t = Axl‘lt + Butlt’
the input sequence Uy, «.., U1y

» U, to denote the input u at time 7 + k computed at time ¢

Note: X3|1 # X3|2
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Notation

Let U* = {u*, u* ...,u* } be the optimal solution to the short-term problem. The first element of
t—1+N|t tt 1]t +N—1|t
* ' '
Ur—>r+N|r is applied to the system

u(t) = utTt(x(t)).

The optimization problem is then repeated at time t + 1 based on the new state x, Pl = x(t+ 1)

Thus, we define the receding horizon control law as

7 (X(2)) := ug (X(7))

Which results in the following closed-loop systems:
x(t+ 1) = Ax(t) + Br(x(0)) := £ ,(x(0), 1)

(Preview: a central question will be to characterize the behavior of the closed-loop system)
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Basic formulation - OCP

Assume that a full measurement of the state x(#) is available at the current time ¢

The finite-time optimal control problem solved at each stage is

N—1 Why add a terminal cost and terminal constraints
JF(x(1)) = min Z [ (xt k| Uy +k|r) if what | really care about is the long-horizon
l/tt|t,. . .,MH_N_W k:O problemf?

S.t ’xt+k+1|t — Axt_|_k|t + But+k|t’ k = O,...,N— 1
xt+k|t€X’ k=O,,N—1

Uy € U, k=0,...N—1 Goal: Ensure that the short-horizon problem
models the long-horizon problem

[ and Xy are key design decisions

Xy Njr € Xf

» [ approximates the “tail” of the cost

i x(2) o Xf approximates the “tail” of the constraints
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Simplifying the notation: time-invariant systems

Note that the system, the constraints, and the cost function are time-invariant, hence, to simplify the notation, we (i)

remove | t and (i) set t = 0, in the finite-time optimal control problem, namely

N—1
JE(e) = min I (xy) + )1 (%)

gy Uy —
st x,, =Ax,+By, k=0,.,N-1
xeX, k=0,..,N—1
uelU, k=0,.,N—1
Xy € X;

Xo = x(7)
. Denote the optimal solution to the short-term problem U6’<(x(t)) = {ug)k, . u;\‘j_l}
« With the new notation, the closed-loop system becomes
x(t+ 1) = Ax(¥) + Bra(x(¢)) := £ (x(?))
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Jypical cost function

AN
/

o 2-norm (i.e., constrained LQR)

[ (xN) = xyPxy, ¢ (xk, uk) =x, Ox,+u, Ry, P>0,0>0R>0

e 1-norm

1N
\

lT(xN)= H PxNHp l(xk,uk)= H Ox;, Hp+ H Ru, ”p, p=10roo

where P, O, R are full column ranks 5




Online model predictive control (MPC vO)

repeat
measure the state x(7) at time instant ¢

obtain U(;k(x(t)) by solving finite-time optimal control problem
if U(;k(x(t)) = @ then ‘problem infeasible’ stop x
apply the first element u6‘< of U(>)‘<(x(t)) to the system

wait for the new sampling time ¢ + 1
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MPC Features

Pros:

* Any model
* Linear
* Nonlinear
« Single/Multivariable
« (Constraints

* Any objective
e Sum of squared errors
* Sum of absolute errors
* Economic objective
 Minimum time

5/8/2023

Cons:

« Computationally demanding (important when
embedding controller on hardware)

* May or may not be feasible

 May or may not be stable

AA203 | Lecture 11
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Example: Loss of feasibility

Consider the double-integrator

1 1

0 1 u(t)

x(t+1) = [ ]x(t)+

0
1

N—-1

Consider a receding horizon controller that solves the optimization problem J¥(x(¢)) = min /; (xN) + Z [ (xk, uk),

u
0,...,MN_1 k:O

1 0

with [ (XN) = x;PxN, [ (xk, uk) = x,;erk + ukTRuk, N=3, P=Q= [O |

— — 2
],R_m,@_R

Subject to input and state constraints

—05 <uk) <05, £=0,..3
-5 S
-5
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< x(r) < , k=0,...3
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Example: Dependency on parameters

Question: can we tune parameters and solve this issue”

Consider the unstable system

2 1 1
x(t+ 1) = x(1) + u(t
(r+1) [O 005] 0+, | u®
N—1
Consider a receding horizon controller that solves the optimization problem JF*(x(¢)) = min /; (xN) + Z [ (xk, uk),
uO,...,uN_l k=0

1 0
0 1

with [ (xN) = xyPxy, [ (xk, uk) =x, Ox,+u Ry, Q= [ ], X = R*, P =0

Subject to input and state constraints

-1 <ukk)y<l1, k=0,...N—1
—10 10

< < = U,... —
0 << 19, kmo.vo
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Example: Dependency on parameters

R =10, N = 2: all trajectories unstable.
R =2, N = 3: some trajectories stable.

R =1, N = 4: more stable trajectories.

* Initial points with convergent trajectories

o Initial points that diverge

5/8/2023

D
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Take-away:
Parameters for receding horizon
control influence the behavior of the

resulting closed-loop trajectories in a

complex manner

19



Vlain iImplementation issues

1. The controller may lead us into a situation where after a few steps the finite-time optimal control problem is
infeasible — persistent feasibility issue

2. Even if the feasiblility problem does not occur, the generated control inputs may not lead to trajectories that
converge to the origin (i.e., closed-loop system is unstable) — stability /issue

Key question: how do we guarantee that such a “short-sighted” strategy leads to effective long-term behavior?

One could consider two distinct approaches for doing this:
* Analyze closed-loop behavior directly = generally very difficult
* Derive conditions on

» terminal function /; so that closed-loop stability is guaranteed

« terminal constraint set Xf so that persistent feasibility iIs guaranteed

5/8/2023 AA203 | Lecture 11
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Outline of the next two lectures

Main design choices:
« Persistent feasibility

Further reading:

« F Borrelli, A. Bemporad, M. Morari. Predictive Control for Linear and Hybrid
Systems, 2017.

« J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model Predictive Control: Theory,

Computation, and Design, 2017.
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Addressing persistent teasibility

Goal: design MPC controller so that feasibility for all future times is guaranteed

Approach: leverage tools from invariant set theory N—-1
J(;k(x(t)) = min [; (xN) + Z [ (xk, uk)

U, ...un_y =0
st x,, =Ax,+By, k=0,.,N-1
x.e€X, k=0,..,N—1
u,eU, k=0,.,N-1
Xy € X;

Xo = x(1)
Def: Set of feasible initial states

Xy = {xO €X| El(uo, ...,uN_l) suchthatx, € X,u, € U,k =0,...,N — 1,xy € X,where x| = Ax; + By, k =0,...,N — 1}

A control input can be found only if x(0) € X

5/8/2023 AA203 | Lecture 11
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Controllable sets

For the autonomous system x(# + 1) = ¢(x(¢)) with constraints x(1) € X, u(t) € U, the one-step controllable set

to set S is defined as

Pre(S) := {X € R": ¢(X) € S}

For the system X(7 4+ 1) = ¢(x(?), u(r)) with constraints x(¢) € X, u(t) € U, the one-step controllable set to set

S is defined as

Pre(S) := {x € R": Ju € Usuch that ¢(X, U) € S}

5/8/2023 AA203 | Lecture 11
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Control invariant sets

due U
A set C C X is said to be a control invariant set for the system x(¢# + 1) = ¢(x(¥), u(r)) with constraints

x(t) € X, u(t) € U, if: C,
x(t) € C = du € U such that ¢p(x(¢), u(r)) € Cforall t

Consider the

The set C, C X is said to be the maximal control invariant set for the system x(¢# + 1) = @(x(#), u(¢)) with ggm}ﬁ;&aaﬂt
constraints x(t) € X, u(t) € U, if it is control invariant and contains all control invariant sets contained in X sets
Cl

Let’s define the equivalent for autonomous systems:

» aset A C X is said to be a positive invariant set for the system x(r + 1) = ¢p(x(?)) if x(1) € A = Pp(x(?)) € A

* the maximal positive invariant set contains all other positive invariant sets )

Note on implementation: these sets can be computed by using the MPT toolbox (multi-parametric toolbox) https:// www.mpt3.org/
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https://www.mpt3.org/

Persistent feasibility lemma

Define the “truncated” feasibility set:
Xl .= {Xl = X | 3(1/(1, ...,uN_l) such thatxk = X, l/lk = U,k —_ 1,...,N_ IXN = Xfwherexk+1 =Axk+Buk,k —_ 1,...,N_ 1}

Feasibility lemma:
If set X is a control invariant set for system x(¢ + 1) = Ax(¢) + Bu(¢), x(H) € X, u(t) € U, t =0, thenthe

MPC law is persistently feasible

5/8/2023 AA203 | Lecture 11
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Persistent feasibility lemma

Proof:
1. Consider the preimage of X, Pre (Xl) = {x € R": du € Usuchthat Ax + Bu € Xl}

2. Since X is control invariant, it means that Vx € X, du € U such that Ax + Bu € X,

3. Thus X; C Pre (X;) N X

4. One can write Xy = {xo € X | duy € U such that Axy + Bu, € Xl} = Pre (Xl) N X

5. Thus, X; C X,

6. Pick some x5 € X, Let U6‘< be the solution to the finite-time optimization problem, and u(;k be the first control.
Let x| = Axy + Buj

7. Since U is clearly feasible, one has x| € X,. Since X; C X, one has x| € X,

3. Hence the next optimization problem is feasible!
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Practical significance

. For N =1, we can set Xf = X,. If we choose the terminal set to be control invariant, then MPC will be

persistently feasible independent of chosen control objectives and parameters
* Designer can choose the parameters to affect performance (e.g., stabllity)

« How to extend thisresultto N > 17

5/8/2023 AA203 | Lecture 11
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Persistent feasipility theorem

Feasibility theorem:
If set X¢is a control invariant set for system x(t+1)=Ax(t) + Bu(r), x(r) € X, u(t)e U, t=>0,thenthe

MPC law is persistently feasible

Proof:
1. Define the “truncated” feasibility set:

XN—I — {'XN—I - X ‘ HuN—l such that )CN_I - X, uN—l < UXN < XfWhere XN — A‘XN—I + BuN—l}

Due to the terminal constraint, we know that Axy_; + Buy_| = xy € X,
Since Xy is a control invariant set, there exists a u € U such that x™ = Axy + Buy € X,

The above is exactly the requirement to belong to set Xy_;
Thus, Axy_1 + Buy_; = xy € Xy_
We have just proved that X,,_; is control invariant

Repeating this argument, one can recursively show that Xy_,, Xy_3, ..., X; are control invariant

© N O O~

The persistent feasibility lemma then applies

5/8/2023 AA203 | Lecture 11
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Practical aspects of persistent feasipility

o The terminal set Xf IS Introduced artificially for the sole purpose of leading to a sufficient condition for persistent

feasiblility
* We want it to be large so that it does not compromise closed-loop performance

» Though it is simplest to choose X, = {0}, this is generally undesirable

o We'll discuss better choices in the next lecture

5/8/2023 AA203 | Lecture 11
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Next time

o Stability of MPC
» Explicit MPC
* Practical considerations

5/8/2023
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