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Optimization

Optimization problems typically take the following form:

minimize f (x)

subject to x ∈ S ,

where f : S → R is a function and S is some some set that can generally be described by the
intersection of equality and inequality constraints

gi (x) ≤ 0, for i = 1, . . . ,m,

hj(x) = 0, for j = 1, . . . , k.

Convex Optimization imposes a special structure of “convexity” on both the function f and
the constraint set S
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Why study Convex Optimization?

Observation 1: For convex optimization problems, every locally optimal solution is also
globally optimal, i.e., every first order KKT solution is a global optimizer.

Observation 2: This is significant because numerical optimization algorithms like Gradient
method and Newton Method can find first order KKT solutions/local minima.

Observation 3: Under non-convexities it is often computationally hard to find global
minimizers.
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Convex Functions

Definition (Convex Functions)

A function f : S → R is convex if for any x1, x2 ∈ S and any α ∈ [0, 1], it holds that

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

That is, a function is convex if the chord between f (x1) and f (x2) overestimates f between x1
and x2. Examples:

Yes! No
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Convex Sets

Definition (Convex Set)

A set S ⊂ Rd is convex if and only if: for any x , y ∈ S and any α ∈ [0, 1], we also have
αx + (1− α)y ∈ S .

Examples:

Yes! No

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 7 / 38



Convex Sets

Definition (Convex Set)

A set S ⊂ Rd is convex if and only if: for any x , y ∈ S and any α ∈ [0, 1], we also have
αx + (1− α)y ∈ S .

Examples:

Yes! No

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 7 / 38



Convex Program

Definition (Convex Program)

A convex program (aka convex optimization problem) is a minimization problem of a convex
function over a convex set:

minimize f (x)

subject to x ∈ S

where S is a convex set and f : S → R is a convex function.

Suppose a set S is described by the intersection of equality and inequality constraints

gi (x) ≤ 0, for i = 1, . . . ,m,

hj(x) = 0, for j = 1, . . . , k.

Then, S is convex if the functions hj(x) are linear, and the functions gi (x) are convex.
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Recipe to Identify Convex Programs

An optimization problem

minimize f (x)

subject to gi (x) ≤ 0, for i = 1, . . . ,m,

hj(x) = 0, for j = 1, . . . , k .

is convex if

1 The function f (x) is convex

2 The functions hj(x) are linear

3 The functions gi (x) are convex
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Examples

Is the following problem convex?

minimize cT x

subject to aTi x ≤ 0, for i = 1, . . . ,m,

bTj x = 0, for j = 1, . . . , k.

This is a linear program - All linear programs are convex!
What about the following problem?

minimize cT x

subject to ||x ||2 = 1.

This problem is not convex, since the equality constraint is non-linear. But it can be
convexified as:

minimize cT x

subject to ||x ||2 ≤ 1.
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Convex Program: Local Optima are Global Optima

Definition (Local Minimum)

For an optimization problem minx∈S f (x), a point x∗ is a local minimum if there exists some
ϵ > 0 so that for every x ∈ S with ||x − x∗||2 ≤ ϵ, f (x∗) ≤ f (x).

Theorem (Equivalence of Local and Global Optima)

Let minx∈S f (x) be a convex program. If x∗ is a local minimum, then f (x∗) ≤ f (x) for every
x ∈ S. In other words, x∗ is a global minimum.
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Convex Program: Local Optima are Global Optima

Proof: (by contradiction) Suppose x∗ is a local but not global minimum.

Since x∗ is a local optima, there exists ϵ > 0 so that f (x∗) ≤ f (x) for all x ∈ S ,
||x − x∗||2 ≤ ϵ.

Since x∗ is not a global minimum, we can find x0 ∈ S where f (x0) < f (x∗).

Since S is convex, αx∗ + (1− α)x0 ∈ S for every α ∈ [0, 1].

Note that f ((1− α)x∗ + αx0) ≤ (1− α)f (x∗) + αf (x0) < f (x∗).

Pick α′ = ϵ
2||x∗−x0||2

and set x ′ := (1− α′)x∗ + α′x0.

We have f (x ′) < f (x∗) and ||x∗ − x ′||2 ≤ ϵ.

This contradicts the fact that x∗ is a local minimum.
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Convex Program: Local Optima are Global Optima

The result relies on both S , f being convex.

S not convex examples: Optimal Control of Nonlinear Systems, Integer Programming.

f not convex examples: Training Neural Networks.
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Examples of Convex Optimization
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Optimization Models and Tools

We will focus on two of the most common convex Optimization Examples:

1 Linear Programming (LP) and Duality

2 Quadratic Programming (QP)

Other Common Optimization Models

Semidefinite Programming (SDP).

Convex Programming (CP).

Mixed-Integer Linear Programming (IP).

Optimization Software

CVXPY (LP, QP, SDP, CP, IP).

CPLEX (LP, QP, IP).
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Linear Programming

Goal: Minimize a linear function subject to linear equality and inequality constraints.

Mathematically,

minimize
x∈Rn

cT x

subject to Ax ≤ b,

Aeqx = beq.

A linear programming instance is specified by
c ∈ Rn, b ∈ Rp,A ∈ Rp×n, beq ∈ Rq,Aeq ∈ Rq×n.

Software (CVXPY):
x = cvx.Variable(n)

prob = cvx.Problem(cvx.Minimize(c.T@x), [A @ x <= b])

prob.solve()
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LP Duality

Suppose we have the following “Primal” linear program:

minimize
x∈Rn

cT x

subject to Ax ≤ b,

x ≥ 0.

Then, it has the following dual

maximize
x∈Rn

bT y

subject to AT y ≥ −c ,

y ≥ 0.
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Why is Duality Important?

Weak Duality: The optimal objective value of the dual problem is always a lower bound on
the optimal objective value of the primal problem, i.e., cT x∗ ≥ bT y∗.

Strong Duality: If the primal problem has a feasible solution, then the optimal objective value
of the dual problem is exactly equal to the optimal objective value of the primal problem, i.e.,
cT x∗ = bT y∗.
Shadow Price Interpretation: The dual variables of the constraints of the primal problem
can be interpreted as prices.

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 18 / 38



Why is Duality Important?

Weak Duality: The optimal objective value of the dual problem is always a lower bound on
the optimal objective value of the primal problem, i.e., cT x∗ ≥ bT y∗.

Strong Duality: If the primal problem has a feasible solution, then the optimal objective value
of the dual problem is exactly equal to the optimal objective value of the primal problem, i.e.,
cT x∗ = bT y∗.
Shadow Price Interpretation: The dual variables of the constraints of the primal problem
can be interpreted as prices.

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 18 / 38



LP Example - Resource Allocation

Consider a scenario where m divisible resources r1, . . . , rm must be allocated to n people
t1, . . . , tn.

Each resource has a capacity of bm units.

Each user can obtain at most one unit of resources

uij is the utility achieved when person ti is allocated resource rj .

Objective: Assign resources to people to maximize the total utility
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LP Example - Resource Allocation

We can formulate the problem as a linear program with the decision variable: x ∈ Rnm, where
xij determines whether or not ti is assigned resource rj .

maximize
x∈Rnm

n∑
i=1

m∑
j=1

uijxij (1)

subject to
n∑

i=1

xij ≤ bj for all 1 ≤ j ≤ m (2)

m∑
j=1

xij ≤ 1 for all 1 ≤ i ≤ n (3)

x ≥ 0.

(2) ensures that no good is sold more than its capacity. (3) ensures that no user gets more
than one good.
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LP Example - Resource Allocation

But how do we convince people that this is really the best allocation for them?

Let p be the prices in the market. Then, each person ti wishes to maximize their payoff given
by

Payoffi = Total Utility accrued - Total Price Paid,

=
m∑
j=1

(uij − pj)xij ,

subject to the constraint that they consume at most one resource.

That is, users wish to purchase any good j such that j ∈ argmaxj∈[m]{uij − pj} as long as
uij ≥ pj for some j .
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LP Example - Resource Allocation

Let pj be the dual of the capacity constraints and λi be the dual of the allocation constraints.
Then, we have the following dual problem:

minimize
p∈Rm,λ∈Rn

m∑
j=1

pjbj +
n∑

i=1

λi

subject to λi ≥ uij − pj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m

p ≥ 0, λ ≥ 0.

The optimal solution is achieved when λi is minimized, i.e., λi = maxj{uij − pj}.
Thus, the dual problem has the following economic interpretation:

1 pj are the good prices

2 λi are agent utilities

LP Duality gives a method to set prices and achieve a decentralized implementation of the
optimal solution.
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Linear Programming - Properties

Linear programs can be solved efficiently (millions of variables and constraints); They are
among the easiest convex optimization problems to solve.

There are many applications: Revenue Management, minimum weight matching,
multi-commodity maximum flow, etc.

Definition (Extreme Point)

Given a convex set S , a point x is called extreme if it cannot be written as a convex
combination of other points in S .

As a consequence, all points in S can be written as convex combinations of the extreme points
of S .
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Linear Programming - Properties

For a linear program, the constraint set is comprised of linear equality and inequality
constraints.

This means the constraint set is a polyhedron.

Extreme points of polyhedra are the corners.
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Linear Programming - Properties

Theorem (Extreme Solutions of Linear Programs)

If a linear program minx∈P c⊤x has a finite optimal value (i.e. it has a non-empty solution
set), then the solution set contains at least one extreme point of P.

Proof: Let x∗ ∈ P be an optimal solution.

Let EP be the set of extreme points of P.

Since x∗ ∈ P, we can write it as a convex combination of points in EP .

Thus x∗ =
∑

x∈EP
αxx where

∑
x∈EP

αx = 1 and αx ≥ 0.

Thus c⊤x∗ =
∑

x∈EP
αxc

⊤x ≥ minx∈EP
c⊤x , since the minimum is always at most the

average.

So there is some x ′ ∈ EP with c⊤x ′ ≤ c⊤x∗.

Since x∗ is a minimizer, x ′ must also be a minimizer.
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Quadratic Programming

Goal: Minimize a quadratic function subject to linear constraints.

Mathematically,

minimize
x∈Rn

1

2
x⊤Hx + f ⊤x

subject to Ax ≤ b

Aeqx = beq

where H ⪰ 0, i.e., the matrix H is positive semi-definite.

A quadratic programming instance is specified by
f ∈ Rn,H ∈ Rn×n, b ∈ Rp,A ∈ Rp×n, beq ∈ Rq,Aeq ∈ Rq×n.

Software (CVXPY):
x = cvx.Variable(n)

prob = cvx.Problem(cvx.Minimize((1/2) * cvx.quad form(x, H) + f.T @ x), [A

@ x <= b, Aeq@x == beq])
prob.solve()
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QP Example: Discrete LQR

Given a discrete linear dynamical system

xt+1 = Axt + But

The goal is to efficiently drive the state from x0 to the origin. We incur a large cost if (a) the
state is far from the origin or (b) we use a lot of control effort.

1

2
x⊤TQT xT +

1

2

T−1∑
t=0

x⊤t Qxt + u⊤t Rut
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QP Example: Discrete LQR

The discrete Linear Quadratic Regulator (LQR) can be formulated as a QP.

minimize
u∈RT

1

2
x⊤TQT xT +

1

2

T−1∑
t=0

x⊤t Qxt + u⊤t Rut

subject to xt+1 = Axt + But for all 0 ≤ t ≤ T − 1 (4)

x0 = initial condition (5)

(6)
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CVXPY: Convex Optimization in Python
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Problem Objects in CVXPY

Instantiate by specifying an objective function and constraints.

prob = cvx.Problem(objective, constraints)

Specify a decision variable x = cvx.Variable(n).

The objective is an expression, i.e. a function of the decision variable.

The constraints is a list of constraint objects.

Use prob.solve() to solve the problem.

Use prob.status to see if the optimization was successful.

The solution can then be found at x.value

The objective value of the solution can be found at prob.value
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Least Squares in CVXPY

Recall the Least squares problem:

min
x∈Rm

||Ax − b||22

where A ∈ Rn×m, b ∈ Rn.

Problem setup

import numpy as np

import cvxpy as cvx

n = 10

m = 5

A = np.random.normal(0,1,(n,m))

b = np.random.normal(0,1,(n,))

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 31 / 38



Least Squares in CVXPY

Recall the Least squares problem:

min
x∈Rm

||Ax − b||22

where A ∈ Rn×m, b ∈ Rn.

Problem setup

import numpy as np

import cvxpy as cvx

n = 10

m = 5

A = np.random.normal(0,1,(n,m))

b = np.random.normal(0,1,(n,))

AA 203 Recitation #2 Convex Optimization & Optimization Tools April 14th, 2023 31 / 38



Least Squares in CVXPY

Solving the problem

x = cvx.Variable(m)

objective = cvx.Minimize(cvx.sum_squares(A @ x - b))

constraints = []

prob = cvx.Problem(objective, constraints)

prob.solve()

print(prob.status)

print(prob.value) # optimal objective value

print(x.value) # get the optimal solution
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Discrete LQR in CVXPY

Recall the Discrete LQR problem:

minimize
u∈RT

1

2
x⊤TQT xT +

1

2

T−1∑
t=0

x⊤t Qxt + u⊤t Rut

subject to xt+1 = Axt + But for all 0 ≤ t ≤ T − 1

x0 = initial condition
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Discrete LQR in CVXPY

Problem setup

import numpy as np

import cvxpy as cvx

n = 5 # state dimension (x)

m = 5 # control dimenion (u)

T = 20 # number of timesteps in planning horizon

u_bound = 1.0 # bound on control effort

Q = np.eye(n) # state deviation cost

R = 2*np.eye(m) # control effort cost

A = np.random.normal(0,1,(n,n)) # dynamics

B = np.random.normal(0,1,(n,m))

x_0 = np.random.normal(0,1,(n,)) # initial condition
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Discrete LQR in CVXPY

Iterative building of objective and constraints

X = {}

U = {}

cost_terms = []

constraints = []
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Discrete LQR in CVXPY

Iterative building of objective and constraints

for t in range(T):

X[t] = cvx.Variable(n) # state variable for time t

U[t] = cvx.Variable(m) # control variable for time t

cost_terms.append( cvx.quad_form(X[t],Q) ) # state cost

cost_terms.append( cvx.quad_form(U[t],R) ) # control cost

if (t == 0):

constraints.append( X[t] == x_0) # initial condition

if (t < T-1 and t > 0):

# dynamics constraint

constraints.append( A @ X[t-1] + B @ U[t-1] == X[t] )
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Discrete LQR in CVXPY

Solving the Problem

objective = cvx.Minimize(cvx.sum(cost_terms))

prob = cvx.Problem(objective, constraints)

prob.solve()

print(prob.status) # optimal, infeasible, etc.

print(prob.value) # optimal objective value

print(U[0].value) # optimal control
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Key Takeaways

1 Why it is important to study Convex Optimization

2 Basics of Convex Programming

3 Identifying Convex Programs

4 Basics of Linear Programming

5 Shadow Prices

6 Quadratic Programming

7 Basic Implementation on CVXPY
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